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The Goal: a high total organic carbon (TOC) rock

need to produce OC, not dilute it, and preserve it from degradation
which process is most important?
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Production

Of all of the TOC produced in the upper ocean, only
a small fraction sinks past 100 m water depth

a Export Efficiency: % of
produced carbon that sinks
past 100 m water depth
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Henson, S., Le Moigne, F., & Giering, S.
(2019). Drivers of carbon export
efficiency in the global ocean. Global
Biogeochemical Cycles, 33, 891-903.
https://doi.org/10.1029/2018GB006158
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So, both recycling and export efficiency decouple
OC production from external nutrient supply

what controls export efficiency?



Production

Ballast Hypothesis
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Figure 7. Scatter plots showing the correlation between POC flux and ballast flux below 1000 m
from a global coverage of sediment traps. CaCOs3 is thought to be the most important transporter

of POC to the deep sea. (a) r = 0.829, (b) r = 0.595, (¢) » = 0.536; P < 0.0001. (Reproduced
by permission from Klaas & Archer (2002). Copyright 2002 American Geophysical Union.)
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Decomposition

Oxic Degradation

CHQO -+ OQ — COQ + HQO
Anoxic Degradation

2 CHQO + HQSO4 — 2 COQ + HQS -+ QHQO

also works with Fe3+, Mn4+, NOs-, & disproportionation

Oxidants dissolved* in seawater degrade OC. So, to preserve OC,
we need to bury it deeper than oxidant penetration depth quickly
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Decomposition

Of all of the TOC exported, only a small fraction is buried.
(small leak of a small leak)
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Decom pOSiti ON (what about variable sedimentation rates?)

log( accumulation rate ) [mm yr-1]
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Dilution
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Feedbacks

P recycling feedback (positive):

® P readily absorbs to Fe3+ oxides
® adsorbed P is inaccessible (limit to recycling)

® Increasing OC burial favors Fe3+ reduction
® Fe oxides converted to sulfides, releasing P
® more efficient P recycling, more OC burial Van Cappellen and Ingall 1996 Science
® nvoked for OAEs

0, feedback (negative):
® |Increasing net OC (and S) burial increases pO2

CO, + HyO =2 CH,0 + O

® (s dominant oxidant

® Higher oxidant abundances decreases OC burial
® upper limit to atmospheric pO2 thought to be spontaneous OC combustion



Maturation, etc

Rimstidt et al. 2017 ESR
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Toolkit

terrestrial vs. marine C using d13C and C/N

How do we figure out:
® organic matter source burial efficiency & anoxia
® affects oil/gas production reconstruction

® reasons for OC enrichment _—— with trace elements
® predictive power to find other reservoirs

® which diagenetic reactions occurred Identifying authigenic
® porosity changes —
e amount of OC in-situ
® /ab measurements are slow/expensive

\ TOC correlations with

gamma producing
elements

— minerals & formation
mechanisms



Terrestrial vs. Marine Carbon
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Ancient Burial Efficiency

molybdate (likes to stay dissolved) thiomolybdate (particle reactive)

¥ ¥
MoY10,4%~ + 4H,S = Mo"'S,%~ + 4H,0

e When enough TOC is buried that Oz is consumed, SO4 reduction starts
e The presence of H2S changes Mo speciation (also applies to Re, U, Zn, etc) .
e Leads to removal of Mo from seawater and addition to sediments

So, rocks with high Mo were likely deposited under anoxic (and sulfidic) conditions
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TOC Correlations

Chermak and Schreiber 2014 Int. J. Coal Geo.
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TOC sometimes correlated with U, but not always. Why?



Authigenic Components of Marine Sediments

The formation of authigenic minerals in marine sediments directly relates to OC supply
2 CHQO -+ HQSO4 — 2 COQ -+ HQS + 2 HQO

f reacts to form FeS:
525 preferentially reduced, but if all S is (provided supply of reactive Fe)
consumed, product (pyrite) has to have same
Isotopic composition as starting sulfate
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Fike et al. 2015 AREPS



Sulfate reduction also affects authigenic carbonate formation
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Unless methane is involved

Two opposing effects of sulfate reduction on carbonate precipitation
in normal marine, hypersaline, and alkaline environments

Patrick Meister*
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