A PHYSICAL THEORY OF THE FORMATION
OF HOODOOS

by A. E. ScHEIDEGGER (*)

Summary — The thesis is advanced that hoodoos (mushroom-shaped erosional
features in badlands) are caused by water from cloudbursts turning the corner at the
brim of the overhang, flowing for a distance upside-down on the underside. This type
of upside-down flow is well known as « teapot effect » in the case of tea being poured
from a pot flowing down the underside of the spout rather than straight on into the
cup. The measured overhang of hoodoos is in good agreement with the theoretical
values obtained from hydrodynamic stability considerations.

1. Iniroduction — In semi-arid, sandy or clayey areas where there is not enough
moisture and time available between cloudbursts to allow vegetation to grow pro-
fusely, the water washes gulleys and valleys into otherwise undisturbed, flat strata.
Due to the lack of vegetation, the sides of the gulleys remain bare of plant growth
although the more level parts show some cover with such low-lying plants as prairie
grass and cactus. The whole area thus takes on a bleak appearance; the type
of landscape it represents is therefore referred to as « bad lands ». Such bad lands
stretch over wide areas in the interior of North America; a notable stretch of them
is situated in the Red Deer River Valley of Alberta between Drumbheller and Brooks.

Since erosion in bad lands does not proceed at the same pace in all localities,
characteristic and sometimes fantastic features result. At times, strata are en-
countered which present slightly more resistance to ablation and dissolution by
water than others so that «islands » are formed around which erosion takes place
at a faster pace. The water now collects even more in the deeper places and the
more resistive top of the developing feature acts as a protection. Thus, a series
of features will eventually stand out in an area which all around has been eroded
to a lower level. In general, the features thus created are pyramidal structures
and are referred to as mesas or buttes. A typical array of such pyramidal structures,
as photographed near East Coulee, Alberta (some 90 miles North-East of Cal-
gary) is shown in Figure 1. '

The assumption of erosion by rain explains the pyramidal structures quite
naturally. However, one occasionally finds clusters of more unusual structures
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Fig. 1 - Typical bad land topography in the Red Deer River Vulley, Alberta, showing
pyramidal structures.

which have a strange, mushrocm-shaped form. Instead of being pyramidal,
they have an overhanging «hat» so that they have the general appearance of
giant mushrooms. Such structures are called hoodoos. A cluster of hoodoos is
shown in Figure 2.

Fig. 2 - A cluster of hoodoos near East Coulee, Alberia.
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If one tries to assume an origin of the hoodoos which would be analogous to
that of the pyramidal structures referred to above, one is at once faced with the
problem as to how the water gets around the « brim » of the «hat » of the hoodoos
so as to wash out their «neck ». One might think that the causes for the water
turning the corner are surface forces. However, it is the writer’s contention that

Fig. 3 - Close-up of a hoodoo,
showing its mushroom shape.

the phenomenon is analogous to that encountered when tea heing poured from a
teapot runs down the underside of the spout rather than straight on into the cup.
This phenomenon has been called teapot effect; it is not due to surface forces, in-
terfacial tensions or such like, but is a eonsequence of the prevailing flow potentials.

It is the intention of this paper to establish the thesis that hoodoos are created
by the teapot effect. In order to do this, we first give a more accurate description
of the hoodoos, including their commonly found measurements. Then we shall
describe the teapot effect, and finally analyse the bearing of the latter upon the
formation of the hoodoos.

2. Description of Hoodoos — Let us have a closer look at the features which
we have called hoodoos. A close-up photograph of such a hoodoo, taken near
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East Coulee, Alberta (*) is shown in Figure 3. This particular hoodoo is 2.4 metres
high, and the total overhang of the top plate is 0.3 metres. The writer measured
three hoodoos of the cluster shown in Figure 2; the result of this procedure is shown
in, Table 1. The hoodoo shown in Figure 3 is No. 2 in Table 1.

TaBLE 1. — Measurements of Three Hoodoos.
Ne. Height Waist Overhang

1 3.0m 0.6 m 0.4m
1.5m 0.5 m

2 24 m 0.8 m 0.3m
1.4m 0

3 1.6 m 0.8 m 0.2m
14 m

In inspecting Table 1, it will be noted that in some instances, there are two
numbers given. These indicate the maximum and minimum values for various
cross-sections of the hoodoo in question.

The problem, then, is to explain the various overhangs of from 20-50 cen-
timeters.

3. Teapot Effect — In order to proceed to our explanation of the observed
overhangs on hoodoos, let us now investigate what is known about the teapot
effect, as described in the Introduction. The teapot effect is not due to surface forces,
but is a consequence of the prevailing flow potentials. It has been ‘closely studied
by REeINER (1) and by KEeLLER (3).

> h _— Fig. 4 - Flow with one free surface
PLATE . S, .
around the edge of a semi-infinite flat
€&—— |n plate. Afier KELLER.

If we neglect gravity forces for one moment, then it can be shown that there
are various possible flows when a jet of fluid leaves a nozzle with parallel walls.
KEeLLER (2) made a study of this and came up with a variety of flows. He calcu-
lated the flow potentials for the planar case where a jet is confined between two
parallel plates. The plates end, say, at x = 0 and the jet moves on. There are
four possibilities. One is that the jet moves straight on, another that it turms
around the upper as well as around the lower plate, filling the whole of space. The
remaining two possibilities are where the jet turns either around the upper or around
the lower plate. This is the teapot effect. In the course of his investigations,
Kerier found an additional flow which has a direct bearing upon the problem
of the hoodoos.

(*) Across from the picnic shelter on the Drumheller-East Coulee highway near
the C.P.R. railway crossing.
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Assume that there is a plate extending along the x-axis towards minus in-
finity, ending at x = 0. Then it can be shown that a free surface flow is possible
whose surface has (at minus infinity) the distance -+ A from the plate. The geo-
metry of this flow is then as shown in Figure 4.

The complex potential for this flow is calculated by making a series of con-
formal mappings until the boundaries are of such a form that the potential can
be written down easily. In order to do this, one must assume that the stream
fanction (the imaginary part of the complex potential) is zero on both sides of
the plate (since this represents one streamline) and that on the free surface, it
is equal to a constant { representing the total flux. The equation between the
complex potential w and the complex variable z turns out to be

4h W
(1) z = — —— lognat cosh —— .
E 40

One can indeed convince oneself that w = w (z) satisfies, with its real and imaginary
parts, the Laplace equation and that the boundary conditions as stated are also
satisfied. One therefore has the required solution.

It has thus been demonstrated that, provided gravity is neglected, there exists
a possible solution to the flow equations where the flow turns a corner (1). The
above solution is valid only for a thin plate.

One still has to investigate the effect of gravity. This effect is presumably
small near the corner since the hydrodynamic pressure variations are small there.
However, far from the edge, the flow will be parallel to the plate on the underside.
An exact solution for such a flow is:

[ u = constant
\ v =0
h = constant

@ '
p =po—eg(h +y)

where u is the horizontal velocity, v the vertical velocity, p, the atmospheric pres-

sure, p the density of the fluid and y the distance above the plate (so that the free

surface is at y = —h). lt is immediately obvious that Equation (2) represents

an exact solution of the flow equations, which is possible if

(3) h < po/(rg) -

It turns out, thus, that the atmospheric pressure can indeed support flow on the
underside of a plate.

Equation (2) is met sufficient to «explain» hoodoos, nor the teapot effect.
For, although horizontal flow on the underside of a plate can indeed exist, such
flow is obviously an unstable flow: eventually, it will detach itself and drop off
downward. One must therefore investigate how long the flow can follow the plate
before the always-present disturbances grow sufficiently to make it detach itself.
The procedure for doing this is a standard one for investigating hydrodynamic
instability: small perturbations are introduced into the flow equations and their
growth is analyzed. The above considerations have been applied to precisely
our problem by KEeLLER (2).

' Introducing a perturbation at the edge of the plate, one can calculate the
distance L at which it will have grown by the factor e. This distance does depend
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on the interfacial tension T between air and water. Furthermore, it depends on
the form of the original perturbation. Of interest is that distance L which is the
smallest in all the modes of instability that can occur. The expression for this
minimum distance cannot be written down in closed form, but in two limit cases,
this is possible. KELLER found:

pgh? 2u T
{4) if <1, then L= — |/ —

T g oh

pgh? u 27 T \ /2
) i =1, thenL:_:( _

T EANN

" In hydrodynamic stability calculations it is, then, usually assumed that the
flow will actually become unstable (i.e. detach itself) after it has travelled a di-
stance of 10 L. '

4. Bearing of Teapot Effect on Hoodoos — Let us now investigate the signi-
ficance that the above mentioned discussion might have with regard to the for-
mation of hoodoos.

In the case of hoodoos, the eroding agent is water. 1In the case of water, one
has T = 80 dynes/em, p == 1 gjem®, g = 980 em/sec?; thus

(6) if 12R2<1, then L = u/hl2x 0.0183
(7 if 12k 1, then L =u x 0.0275

where all units are in the cgs system.

The distance L, as has been explained above, is that distance in which the
most significant disturbance grows by the factor e as stated above. In hydro-
dynamic-stability theory, it is usually assumed that the instability will become
predominant (i.e. the flow will detach itself) in'a distance equal to ten times L.

It turns out that the case (b) applies if h is greater than about 1/3 ¢cm. Then

(8) 0L =u X 0.28 cm

irrespective of the thickness h of the flow. It is difficult to estimate the velocity
u in the flow. In a good cloudburst it will probably reach about 1-2 m/sec at the
edge of the overhang. This means that the flow can continue on the underside
for about 28-56 cm before detaching itself. According to earlier remarks about
the mechanism of erosion, this distance of 28-56 cm is the distance by which the
« hat » of the hoodoos can overhang, for, in order to erode the soft material below,
the water must obviously first reach it.

It thus appears that the values postulated above from a discussion of the teapot
effect are in good agreement with those actually found in the measured hoodoos.
This would serve to substantiate the theory.
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