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S u m m a r y  - -  The thesis is advanced that  hoodoos (mushroom-shaped erosionaI 
features in badlands) are caused by water from cloudbursts turning the corner at the  
brim of the overhang, flowing for a distance upside-down on the underside. This type 
of upside-down flow is well known as ~ teapot  effect )) in the case of tea being poured 
from a pot flowing down the underside of the spout rather than straight on into the 
cup. The measured overhang of hoodoos is in good agreement ,A, i th the theoretical  
values obtained from hydrodynamic stability considerations. 

1. In t roduc t ion  - -  In  semi-ar id,  sandy  or c layey  areas  ~ h e r e  there  is no t  e~lough 
mois tu re  and t ime  avai lable  be tween  c loudburs ts  to al low v e g e t a t i o n  to grow pro-  
fusely,  the  wa te r  washes  gulleys and val leys  in to  otherwise und i s tu rbed ,  f lat  s t ra ta .  
Due  to the  lack  of  vege ta t ion ,  the  sides of  the  gulleys r ema in  bare  o f  p lan t  g r o w t h  
a l though  the  more  level  par t s  show some cover  wi th  such low-ly ing  plants  as prair ie  
grass and cactus.  The  whole a rea  thus  t akes  on a b leak  appea rance ;  t he  t y p e  
of  landscape  it  represents  is therefore  re fer red  to as (( bad  lands )). Such bad  lands  
s t re tch  over  wide areas  in the  in te r ior  of  Nor th  Amer i ca  ; a no tab le  s t re tch  of  t h e m  
is s i tua ted  in the  Red  Deer  R i v e r  Val ley  of  A lbe r t a  be tween  Drumhe l l c r  and Brooks .  

Since erosion in bad  lands does no t  p roceed  at  the  same pace in all  local i t ies ,  
charac te r i s t ic  and somet imes  fan tas t ic  features  resul t .  A t  t imes ,  s t r a t a  are en- 
coun te red  which  p resen t  s l ight ly  more res is tance to ab la t ion  and dissolut ion b y  
wa te r  t h a n  others  so t h a t  (~ is lands )) are fo rmed  a round  which  erosion t akes  p lace  
at  a fas te r  pace.  The  wa te r  now collects even  more  in the  deeper  places and t h e  
more resis t ive top  of  the  deve lop ing  feature  acts as a pro tec t ion .  Thus ,  a series 
of  features  will e v e n t u a l l y  s tand  out  in an  area  which  all  a round  has been  e roded  
to a lower  level .  I n  general ,  the  features  thus  c rea ted  are p y r a m i d a l  s t ruc tu res  
and are re fer red  to as mesas or buttes. A typ ica l  a r r ay  of  such p y r a m i d a l  s t ruc tu res ,  
as pho tog raphed  near  E a s t  Coulee, A lbe r t a  (some 90 miles N o r t h - E a s t  of  Cal- 
gary)  is shown in F igure  1. 

The  a s sumpt ion  of  erosion b y  ra in  expla ins  the  p y r a m i d a l  s t ruc tures  qui te  
na tura l ly .  Howeve r ,  one occas ional ly  finds clusters  of  more  unusua l  s t ruc tu res  
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Fig. 1 - Typical  bad land topography in the Red Deer River Valley, Alberta, showing 
pyramidal  structures. 

which have a strange, mushroom-shaped form. Ins tead  of being pyramida l ,  
t hey  have an overhanging ~ ha t  ~ so tha t  t hey  have the general appearance of  
g iant  mushrooms. Such structures are called hoodoos. A cluster of hoodoos is 
shown in Figure 2. 

Fig. 2 - A cluster o f  hoodoos near East  Coulee, Alberta. 
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I f  one tries to assume an origin of the hoodoos which would be analogous to 
tha t  of the pyramidal  structures referred to above, one is at once faced with the 
problem as to how the water gets around the ~t br im ~ of the ~ hat  ~ of the hoodoos 
so as to wash out their ~ neck ~. One might th ink  that  the causes for the water 
tu rn ing  the corner are surface forces. However, it  is the writer's contention tha t  

Fig. 3 - Close-up of a hoodoo, 
showing its mushroom, shape. 

the phenomenon is analogous to tha t  encountered when tea being poured from a 
teapot runs down the underside of the spout rather  t han  straight On into the cup. 
This phenomenon has been called teapot effect; it is not  due to surface forces, in- 
terfacial tensions or such like, bu t  is a consequence of the prevailing flow potentials.  

I t  is the in tent ion of this paper to establish the thesis tha t  hoodoos are created 
by  the teapot  effect. I n  order to do this, we first give a more accurate description 
of the hoodoos, including their commonly found measurements.  Then we shall 
describe the teapot effect, and finally analyse the bearing of the lat ter  upon the 
formation of the hoodoos. 

2. Description o f  Hoodoos - -  Let us have a closer look at  the features which 
we have called hoodoos. A close-up photograph of such a hoodoo, taken near  
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East Coulee, Alberta (*) is shown in Figure 3. This part icular hoodoo is 2.4 metres 
high, and the total  overhang of the top plate is 0.3 metres. The writer measured 
three hoodoos of the cluster shown in Figure 2; the result of this procedure is shown 
in Table 1. The hoodoo shown in Figure 3 is No. 2 in Table 1. 

TABL~ 1. - -  Measurements of Three Hoodoos. 

No. Height Waist Overhang 

3.0 m 0.6 m 
1.5m 

2 .4  m 

1.6 m 

0 .8  m 

1.4 m 

0 .8  m 

1.4 m 

0.4 m 
0.5m 

0.3m 
0 

0.2m 

In  inspecting Table 1, it  will be noted that  in some instances, there are two 
numbers  given. These indicate the maximum and min imum values for various 
cross-sections of the hoodoo in question. 

The problem, then, is to explain the various overhangs of from 20-50 cen- 
timeters. 

3. Teapot Effect - -  In  order to proceed to our explanation of the observed 
overhangs on hoodoos, let us now investigate what is  known about the teapot 
effect, as described in the Introduct ion.  The teapot effect is not  due to surface forces, 
bu t  is a consequence of the prevailing flow potentials. I t  has been 'closely studied 
by  REINER (1) and by  KELLER (~). 

< 

h 

PLATE 
Fig. 4 - Flow with one free surface 
around the edge of a semi-infinite fiat 

plate. After KELLER. 

I f  we neglect gravi ty forces for one moment,  then it can be shown tha t  there 
are various possible flows when a jet  of fluid leaves a nozzle with parallel walls. 
K~.LLER (2) made a s tudy of this and came up with a variety of flows. He calcu- 
lated the flow potentials for the planar case where a jet  is confined between two 
parallel plates. The plates end, say, at x ~- 0 and the jet  moves on. There are 
four possibilities. One is tha t  the jet  moves straight on, another tha t  it turns  
around the upper as well as around the lower plate, filling the whole of space. The 
remaining two possibilities are where the jet  turns either around the upper or around 
the lower plate. This is the teapot effect. I n  the course of his investigations, 
KELLER found an additional flow which has a direct bearing upon the problem 
of the hoodoos. 

(*) Across from the picnic shelter on the Drumheller-East Coulee highway near 
the C.P.R. railway crossing. 
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Assume tha t  there is a plate  extending along the x-axis towards  minus in- 
finity, ending at  x -~ 0. Then i t  can be shown tha t  a free surface flow is possible 
whose surface has (at minus infinity) the distance • h from the plate.  The geo- 
me t ry  of this flow is then  as shown in Figure 4. 

The complex potent ia l  for this flow is calculated b y  making a series of con- 
formal mappings unt i l  the boundar ies  are of such a form tha t  the potent ia l  can 
be wr i t t en  down easily. I n  order  to do this, one must  a s s u m e t h a t  the s t ream 
function (the imaginary  pa r t  of  the complex potential)  is zero on both  sides of  
the plate  (since this represents  one streamline) and tha t  on the free surface, i t  
is equal  to a constant  Q represent ing the to ta l  flux. The equation between the 
complex potent ia l  w and the complex variable z turns out to be 

4h =w 
(1) z = - -  - - l o g n a t  cosh - -  

r: 4Q 

One can indeed convince oneself tha t  w ~ w (z) satisfies, with its real and imaginary  
par ts ,  the Laplace equat ion and tha t  the boundary  conditions as s ta ted  are also 
satisfied. One therefore has the required solution. 

I t  has thus been demonst ra ted  tha t ,  provided g rav i ty  is neglected, there exists 
a possible solution to the flow equations where the flow turns a corner (1). The 
above solution is val id only for a th in  plate.  

One still  has to invest igate the effect of  gravi ty.  This effect is p resumably  
small  near  the corner since the hydrodynamic  pressure var ia t ions  are small  there.  
However,  far from the edge, the flow will be paral le l  to the plate on the underside.  
An exact  solution for such a flow is: 

i U ~ c o n s t a n t  
v ~ 0  

(2) ! h = c o n s t a n t  
P - - P 0 - - P g i h  ~ y )  

where u is the horizontal  velocity,  v the ver t ical  velocity,  P0 the atmospheric  pres- 
sure, • the densi ty  of  the fluid and y the distance above the plate  (so tha t  the free 
surface is a t  y = - - h ) .  I t  is immedia te ly  obvious tha t  Equat ion  (2) represents  
an exact solution of the flow equations,  which is possible i f  

(3) h < Po/(~g)- 

I t  turns  out, thus, tha t  the atmospheric  pressure can indeed support  flow on the 
underside of a plate.  

Equat ion  (2) is not  sufficient to ~r explain ~ hoodoos, nor the teapot  effect. 
For ,  a l though horizontal  flow on the underside of a plate  can indeed exist,  such 
flow is obviously an unstable  flow: eventual ly ,  i t  will detach i tself  and drop off 
downward.  One must  therefore invest igate how long the flow can follow the pla te  
before the a lways-present  dis turbances grow sufficiently to make i t  detach itself. 
The procedure for doing this is a s t andard  one for invest igat ing hydrodynamic  
ins tab i l i ty :  small  per turba t ions  are introduced into the flow equations and their  
growth is analyzed.  The above considerations have been applied to precisely 
our problem b y  K~LLER (2). 

In t roducing  a pe r tu rba t ion  at  the edge of  the plate ,  one can calculate the 
distance L at  which i t  will have grown b y  the factor e. This distance does depend 
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on the interracial tension T between air and water. Furthermore,  it depends on 
the form of the original perturbation.  Of interest  is tha t  distance L which is the 
smallest in all the modes of instabi l i ty  tha t  can occur. The expression for this 
min imum distance cannot be writ ten down in closed form, bu t  in two limit cases, 
this is possible. K~LLEI~ found: 

pgh ~ 2u 1 /  T 
(4) if ~ 1, then L = [ 

T g 9h 

pgh 2 u ( 27 T ~1/4 
(5) if - -  >> 1, then L = - -  . 

T V 2 \  ~g~ / 

In  hydrodynamic stabili ty calculations it is, then, usually assumed that  the 
flow will actually become unstable (i.e. detach itself) after it has travelled a di- 
stance of 10 L. 

4. Bearing of Teapot Effect on Hoodoos --- Let us now investigate the signi- 
ficance that  the above mentioned discussion might have with regard to the for- 
mat ion of hoodoos. 

In  the case of hoodoos, the eroding agent is water, i n  the case of water, one 
has T = 80 dynes/cm, p = 1 g/cm 3, g ~ 980 cm/sec 2; thus 

(6) if 12h 2 ~ 1 ,  then L = u/hl/2X 0.0183 

(7) if 12hZ>>1,  then L = u  • 0.0275 

where all units are in the cgs system. 
The distance L, as has been explained above, is tha t  distance in which the 

most significant disturbance grows by  the factor e as stated above. In  hydro- 
dynamic-stabi l i ty theory, it  is usually assumed tha t  the instabi l i ty  will become 
predominant  (i.e. the flow will detach itself) in a distance equal to ten  times L. 

I t  turns out that  the case (b) applies if h is greater than  about 1/3 cm. Then 

(8) 10 L -~- u X 0.28 cm 

irrespective of the thickness h of the flow. I t  is difficult to estimate the velocity 
u in the flow. In  a good cloudburst it will probably reach about 1-2 m/see at the 
edge of the overhang. This means that  the flow ean continue on the underside 
for about 28-56 em before detaching itself. According to earlier remarks about 
the mechanism of erosion, this distance of 28-56 em is the distance by  which the 
~ hat  ~ of the hoodoos can overhang, for, in order to erode the soft material below, 
the water must  obviously first reach it. 

I t  thus appears tha t  the values postulated above from a discussion of the teapot 
effect are in good agreement with those actually found in the measured hoodoos. 
This would serve to substantiate the theory. 
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