Unconventional
Resources and Basin Evolution



Objective

Discuss some regional scale controls (plate to basin) on unconventional
resources.

lllustrate with five examples (source rock, tight sand and CBM reservoirs).
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Unconventional Resources —

Categories



Permeability vs. Viscosity
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HC Resource Types: Permeability vs. Viscosity

Unconventional Types:
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Global Screening Analysis of Basin Factors



Regional/Basin Controls on Unconventional Resources - Database

Unconventional Plays: Types Evaluated Unconventional Plays: Country
O Tight Sand 0 USA
O Canada
@ Source O China
Rock O Australia
B CBM @ Argentina
B Russia
@ Heavy Oil B Algeria
@ Venezuela
N=54 B Germany

87 unconventional plays screened. 54 further analyzed based on materiality and maturity.

Of these 54, 45 plays are significantly commercialized (e.g., Permian Wolfcamp); 9 are emerging with commercial
promise (e.g., Nequen Vaca Muerta).

Representative, but not necessarily comprehensive.

Dominated by US/Canada because of commercial/infrastructure/regulatory considerations (and favorable geology).



Regional/Basin Controls on Unconventional Resources - Depositional Basin

O Foreland

B Complex Foreland
B Cratonic Sag

O Extensional

O Passive Margin

B Back-Arc

@ Fore-Arc

B Transpressional

Unconventional plays occur in all kinds
of basins — many pathways to success.

Forelands are the most important.

The prominence of forelands, in part,
probably includes a bias related to
commercial considerations —
unconventional developments
generally require an onshore setting.

But also, rapid flexural subsidence in
foreland basins is often associated
with thick source rocks (“shale
reservoirs”) and tight reservoir
sandstones — discussed later.

Lastly, volcanic arc association may be
an additional source of nutrients.



Regional/Basin Controls on Unconventional Resources - Reservoir Age

@ Heavy Oil
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Source Rock and CBM Plays — Age

Source Rock and CBM Plays: Reservoir Age 25 Global HC Source Rocks vs. Age
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Basin Evolution and Unconventional Play Elements

Sand reservoir

. Marine source rock
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Deposition:
Reservoir Presence / Mineralogy
Organic Richness

Burial:

Reservoir Compaction/Diagenesis
Source Maturation

Pressure Development

Exhumation & Deformation:
Folding/Faulting

Natural Fractures

Oil Biodegradation

Pressure Modification
Drilling Depth



Reservoir Deposition / Characteristics

Reservoir Presence / Mineralogy



Source Rock (“Shale”) Reservoirs: Appalachian Basin Examgllse
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Appalachian Basin: Subsidence History, Shale Reservoirs and Orogenies
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Devonian Source Rocks and Migration of Acadian Foredeep
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Late Devonian Orogenie

Late Devonian - Mississippian (c. 360 Ma)
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Accommodation Controls — Eustasy vs. Tectonics
100000

Eustasy
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* Globally synchronous, spatially consistent.
* Rates high for durations < 0.1 m.y.
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» Detailed internal reservoir architecture usually articulated at

this scale.

Tectonics
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» Temporally heterogeneous, but often correlative within a

basin.

* Magnitude spatially variable and often reversed (uplift and

adjacent subsidence) in same basin.

» Rates much higher than eustasy for durations > 0.5 m.y.

» General models more elusive — many “motifs”.

» Source rock and most tight sandstone reservoir intervals at

this scale.
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e Tectonics and Source Rock Deposition

MSL

® o~ y

Increase in subsidence-related accommodation.

Steepening of depositional profile.

Differentiation / partitioning of basin.

Arc volcanism for retroarc foreland basins.

At basin-scale, 2"9 order unconformities in updip may be ~equivalent to MFS in downdip areas.
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Tectonics and Source Rock Deposition: Possible Elements
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Air Fall Ash
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Condensed section driven by subsidence (concentration of organic matter).
Steepened profile, enhancing upwelling (organic productivity)
Constructional coastal plain, enhanced terrestrial productivity. Nutrient transport (land plants, volcanic ash).

Differentiation of basin, potential silling of water column (dysoxia/preservation)



Volcanic Ash Deposition:

Detrital Zircons: Frontier Fm., U. Cenomanian to L. Coniacian
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Ancestral Rockies and Marathon/Ouachita
Orogenies 300 Ma (Late Pennsylvanian)
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Lower Wolfcamp Unconformity

Culmination of Ancestral Rocky Mountain Orogeny.

Erodes to basement (in places) on Diablo Platform, Central Basin
Platform and Pedernal Uplift.

Transformation of basin architecture from simple ramp to partitioned
uplifts and deep basins (Pennsylvanian to Lower Wolfcamp).




Permian Basin: East-West Cross Section
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Permian Basin: Subsidence History & Tectonic Phases
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Other Examples of Source Rock Reservoirs Associated with Tectono-Subsidence

Bazhenov, West Siberia Basin

Well Log Cross Section Ej_ft Age (Ma)

Modified from Rudolph et al (2015)
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Tight Sandstone Reservmrs Green River Basin Example
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NW Green River Basin: Surface Geology and Lance (~“Maastrichtian) Isopach
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Burial / Maturation

Reservoir Compaction/Diagenesis
Source Maturation
Pressure Development
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Piceance Basin: Isopachs (km)

Flexural thick developed west of a major Laramide uplift (White River Mountains).
Provides space for deposition of thick non-marine reservoir interval (Upper Cretaceous).
Deposition of overburden (Paleoc.-Eoc.) that matures coaly gas sources and develops capillary seal of tight sandstones.
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Witrinite Reflectance [%Ro]

Piceance Basin: Mesaverde Coal Maturity (Gas Source)
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Deformation and Exhumation

Oil Biodegradation
Pressure Modification
Natural Fractures
Drilling Depth
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Piceance Basin: Burial History
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exhumation in Neogene.
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Fracture Example: Fruitland Coal Bed Methane, San Juan Basin, NM

Paleo-Stress Direction controls cleat
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Research Questions of Industry Interest

Understanding the original porosity and permeability in tight unconventional reservoirs:
Quantitative and accurate estimates of organo-porosity, inter-particle, intra-particle and adsorbed gas.
Role of natural microfractures for permeability.

What is the impact of exhumation, which is common to many unconventional plays?
Under what circumstances are hydrocarbons and pressure retained?
What geologic histories lead to capillary entrapment (basin-centered gas) and can we reliably predict its
occurrence?

What is the correct way to understand and model aggregate properties (“scale-up”) relative to flow.
The fine-scale matters, but as it composites over ~50m frac height and 3 km lateral?
Appropriate sequence stratigraphy models at the basin-wide, 2" order scale (i.e., not LST-TST-HST schema)

What is the induced propped fracture network and can we better predict it?
Microseismic only gives us a rough picture of the entire fracture network, most of which does not contain

proppant.

Is there an environmentally more benign way to extract heavy oil, which makes up a large portion of remaining
oil resources, but has a large carbon footprint.

Influence of volcanism on organic productivity.



Closing Comments

Predicting, understanding and developing unconventional petroleum reservoirs has historically relied on
empirical indicators, direct analysis/interpretation and field experimentation.

However, the same basin-scale controls that are germane to conventional resources are also relevant to
unconventional resources.

While these controls are unlikely to provide important commercial insights in established unconventional
plays, they should be understood and utilized in poorly-constrained (“frontier”) settings.

Just as in conventional resources, there is not one (or even a few) success factors — there are many pathways
to success (and even more to failure!).

So beware of purported general models, including what you have heard thus far - a consistent, integrated
technical approach is more important.



