
Unconventional
Resources and Basin Evolution



Discuss some regional scale controls (plate to basin) on unconventional 
resources.

Illustrate with five examples (source rock, tight sand and CBM reservoirs).

Objective



Types of Unconventional Resources – Review

Global Screening Analysis of a Few Regional Factors

Selected Examples

Reservoir Deposition and Characteristics

Burial – Maturation and Diagenesis

Uplift and Exhumation 

Closing Remarks

Outline



Unconventional Resources –

Categories
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Improving Flow:
Potential 
Approaches

Mobility = 
Permeability / Viscosity
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Tar Sand
Mining

Steam / 
Solvents 

(e.g. SAGD, 
CSS, Fireflood, 

etc.)

Shale 
Oil

Sh Gas

Tight Oil

CBM/Tight Gas

Conventional Oil

Conventional Gas

Enhanced Cold Flow 
(CHOPS)

Note –
In reality, there is much 
overlap between 
resource types / 
depletion strategies.

HC Resource Types: Permeability vs. Viscosity

HEAVY OIL

TIGHT OIL & GAS

Unconventional Types:
Heavy Oil
Tight Sandstone/Carbonate
Source Rock (“Shale”)
Coal Bed Methane



Global Screening Analysis of Basin Factors
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Unconventional Plays: Country
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Regional/Basin Controls on Unconventional Resources - Database

• 87 unconventional plays screened. 54 further analyzed based on materiality and maturity. 

• Of these 54, 45 plays are significantly commercialized (e.g., Permian Wolfcamp); 9 are emerging with commercial 
promise (e.g., Nequen Vaca Muerta).

• Representative, but not necessarily comprehensive.

• Dominated by US/Canada because of commercial/infrastructure/regulatory considerations (and favorable geology).
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Regional/Basin Controls on Unconventional Resources  - Depositional Basin
Unconventional plays occur in all kinds 
of basins – many pathways to success.

Forelands are the most important.

The prominence of forelands, in part, 
probably includes a bias related to 
commercial considerations –
unconventional developments 
generally require an onshore setting.

But also, rapid flexural subsidence in 
foreland basins is often associated 
with thick source rocks (“shale 
reservoirs”) and tight reservoir 
sandstones – discussed later.

Lastly, volcanic arc association may be 
an additional source of nutrients.

12

16

5

6

11

2 1 1

Unconventional Plays: Depos. Basin

Foreland

Complex Foreland

Cratonic Sag

Extensional

Passive Margin
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Transpressional
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Unconventional Plays: Reservoir Age

Heavy Oil

Tight Sand

CBM

Source Rk.

Regional/Basin Controls on Unconventional Resources  - Reservoir Age



Oceanic Anoxic Events
Jenkyns (2010)
Brennecka (2011)
Algeo et al. (1994)
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Source Rock and CBM Plays – Age

Global HC Source Rocks vs. Age
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Source Rock and CBM Plays: Reservoir Age

CBM

Source Rk.

Source Rock Reservoir Plays Only



Deposition:
Reservoir Presence / Mineralogy
Organic Richness

Burial:
Reservoir Compaction/Diagenesis
Source Maturation
Pressure Development

Exhumation & Deformation:
Folding/Faulting
Natural Fractures
Oil Biodegradation
Pressure Modification
Drilling Depth

Basin Evolution and Unconventional Play Elements

Sand reservoir

Marine source rock



Reservoir Deposition / Characteristics

Reservoir Presence / Mineralogy
Organic Richness



Cross Section from Ettensohn (2019)
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Source Rock (“Shale”) Reservoirs: Appalachian Basin Example
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Appalachian Basin: Subsidence History, Shale Reservoirs and Orogenies

OROGENY
Early Collision

Alleghany

Acadian Unconformity



Bruner and Smosner, 2011 (DOE) 

Devonian Source Rocks and Migration of Acadian Foredeep



Colpron and Nelson, 2009
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Late Devonian Orogenie

s and Organic Rich Mudstones

Black Shale Formations
1 Ohio-Marcellus
2 Chattanooga
3 Antrim
4 New Albany
5 Woodford
6 Sweetland Creek
7 Bakken
8 Exshaw, Duvernay, 
Muskwa
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Eustasy

• Globally synchronous, spatially consistent. 

• Rates high for durations < 0.1 m.y. 

• Detailed internal reservoir architecture usually articulated at 

this scale.

Accommodation Controls – Eustasy vs. Tectonics

Tectonics

• Temporally heterogeneous, but often correlative within a  

basin.

• Magnitude spatially variable and often reversed (uplift and 

adjacent subsidence) in same basin.

• Rates much higher than eustasy for durations > 0.5 m.y. 

• General models more elusive – many “motifs”.

• Source rock and most tight sandstone reservoir intervals at 

this scale.

Eustasy

Accommodation Change Rate vs. 
Time Duration (Log-Log)

Tectonics 
(Subsidence / 

Uplift)

Uplift
Subsidence
Sea Level Falls
Sea Level Rises



MSL

1. Increase in subsidence-related accommodation.

2. Steepening of depositional profile.

3. Differentiation / partitioning of basin.

4. Arc volcanism for retroarc foreland basins.

5. At basin-scale, 2nd order unconformities in updip may be ~equivalent to MFS in downdip areas.

Tectonics and Source Rock Deposition

2

1

3

5

4



Tectonics and Source Rock Deposition: Possible Elements

MSL

1. Condensed section driven by subsidence (concentration of organic matter).

2. Steepened profile, enhancing upwelling (organic productivity)

3. Constructional coastal plain, enhanced terrestrial productivity. Nutrient transport (land plants, volcanic ash).

4. Differentiation of basin, potential silling of water column (dysoxia/preservation)
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Terr. Plant Material



Arc-derived 
zircons (<250 Ma)

Recycled zircons 
(>250 Ma)

Volcanic Ash Deposition: 
Inferred Distribution

Adapted from Jacobs et al. (2019)

`

Relative Abund. of Volcanic Ash

Detrital Zircons: Frontier Fm., U. Cenomanian to L. Coniacian

WY

UT

Christianson et al. (1994)

high abund. of ash

Mowry-Niobrara time:
• High arc flux
• More ash distal

Frontier

Niobrara

Mowry
Dakota



Permian Basin Paleogeography
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Hueco Canyon Fm. (Upper Wolfcamp)

Pow Wow Conglomerate (Middle Wolfcamp)

Hueco Mountains, Diablo Platform

Lower Wolfcamp Unconformity

• Culmination of Ancestral Rocky Mountain Orogeny.
• Erodes to basement (in places) on Diablo Platform, Central Basin 

Platform and Pedernal Uplift.
• Transformation of basin architecture from simple ramp to partitioned 

uplifts and deep basins (Pennsylvanian to Lower Wolfcamp).



Bone Springs

Wolfcamp

Wolfcamp

Spraberry

3rd

2nd
1st

Lower
Upper

Dean

Delaware Basin Central Basin 
Platform

Midland Basin Eastern Shelf
West East

A
B

C

D

Avalon

Permian Basin: East-West Cross Section

Modified from WTGS, 1984



SL

-4

-6

C Ord S Dev Ms PermP Tr CzJur Cret

100 MY

Central Basin Plat.

Diablo Plat.

Eastern Shelf

Midland Basin

Delaware Basin

After Horak, 1985

S
u
b
s
e
a
 D

e
p

th
 (

k
m

)

Geol. Time

Passive Margin A.R.M.
Orogeny

Post-Comp/
Subsidence

Mid-Wolfcamp Unc.

-2

Permian Basin: Subsidence History & Tectonic Phases



Other Examples of Source Rock Reservoirs Associated with Tectono-Subsidence
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Sevier Fold Belt

Deep 
Basin
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~ Middle Maastrichtian Paleogeography: 
Schematic Perspective View

Active Laramide Uplifts

Flexural Thicks

Sediment Transport

Tight Sandstone Reservoirs: Green River Basin Example
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Burial / Maturation

Reservoir Compaction/Diagenesis
Source Maturation
Pressure Development



USGS Assessment Team, 2002 Pranter and Sommer, 2011

Piceance Basin: Tight 
Sandstone Example (gas)

Basin-Centered 
Tight gas Play



50 km
C.I. = 0.1 km

-108°

40° 40°

-108°

-109°

39°39°

-109°

COUT

White 
River 
Uplift

Douglas 
Creek 
Arch

Adapted from Johnson et al (2004). Poor age control, possibly 
includes some upper Campanian in interval. 

Uncompahgre 
Uplift

50 km
C.I. = 0.2 km

0
.2

39°

40°

-108°-110°

39°

40°

-108°-110°

41° 41°

San
Rafael 
Swell

TH
IN

Uncompahgre 
Uplift

White 
River 
Uplift

Uinta Mountains

Adapted from Johnson et al., 2017

COUT

Douglas 
Creek 
Arch

50 km
C.I. = 0.05 km

39°

40°

-108°-110°

39°

40°

41° 41°

San
Rafael 
Swell

THIN

Uncompahgre 
Uplift

White 
River 
Uplift

Uinta Mountains

COUT

Adapted from Johnson et al., 2017

-108°-110°

Douglas 
Creek 
Arch

Upper Campanian - Maastrichtian Paleocene – Lower Eocene Upper Eocene

Reservoir Deposition Burial – Source Maturity and Porosity Evolution

Piceance Basin: Isopachs (km)
Flexural thick developed west of a major Laramide uplift (White River Mountains).
Provides space for deposition of thick non-marine reservoir interval (Upper Cretaceous).
Deposition of overburden (Paleoc.-Eoc.) that matures coaly gas sources and develops capillary seal of tight sandstones.

Basin-
Centered 
Tight Gas

Based on Saylor and 
Rudolph, in prep.

Flexure 
Models



Nucio and Roberts, 2003

Vitrinite Reflectance (Ro) at base of Mesaverde Gp.

Piceance Basin: Mesaverde Coal Maturity (Gas Source)

Peak Gas Generation

Onset of Generation

Rudolph



Deformation and Exhumation

Oil Biodegradation
Pressure Modification
Natural Fractures
Drilling Depth



Exhumation

Piceance Basin: Burial History

• Approximately 1.2 km of 
exhumation in Neogene.

• Related to uplift of Colorado 
Plateau and more widespread 
epeirogenic uplift of western 
North America.

• Potential implications of 
exhumation:

• Shallower drilling targets
• End of gas generation
• Overpressure
• Microfractures via 

unloading

Rudolph



Fracture Example: Fruitland Coal Bed Methane, San Juan Basin, NM 
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Fruitland Cleat 
Orientation, Ft. 
Lewis, CO

Paleo-Stress Direction controls cleat 
orientation.
Horizontal wells need to be oriented to 
intersect face cleats orthogonally.

Drill Direction



Research Questions of Industry Interest 

Understanding the original porosity and permeability in tight unconventional reservoirs:
Quantitative and accurate estimates of organo-porosity, inter-particle, intra-particle and adsorbed gas.
Role of natural microfractures for permeability.

What is the impact of exhumation, which is common to many unconventional plays?
Under what circumstances are hydrocarbons and pressure retained?
What geologic histories lead to capillary entrapment (basin-centered gas) and can we reliably predict its 
occurrence?

What is the correct way to understand and model aggregate properties (“scale-up”) relative to flow. 
The fine-scale matters, but as it composites over ~50m frac height and 3 km lateral?
Appropriate sequence stratigraphy models at the basin-wide, 2nd order scale (i.e., not LST-TST-HST schema)

What is the induced propped fracture network and can we better predict it?
Microseismic only gives us a rough picture of the entire fracture network, most of which does not contain 
proppant.

Is there an environmentally more benign way to extract heavy oil, which makes up a large portion of remaining 
oil resources, but has a large carbon footprint.

Influence of volcanism on organic productivity.



Closing Comments

Predicting, understanding and developing unconventional petroleum reservoirs has historically relied on 
empirical indicators, direct analysis/interpretation and field experimentation.

However, the same basin-scale controls that are germane to conventional resources are also relevant to 
unconventional resources. 

While these controls are unlikely to provide important commercial insights in established unconventional 
plays, they should be understood and utilized in poorly-constrained (“frontier”) settings. 

Just as in conventional resources, there is not one (or even a few) success factors – there are many pathways 
to success (and even more to failure!). 

So beware of purported general models, including what you have heard thus far - a consistent, integrated 
technical approach is more important. 


