INTRODUCTION TO CARBON CYCLING

CO_2 greenhouse gas - necessary to keep planet warm

\[\text{vibrational modes sensitive to infrared} \]

Energy balance

Incoming solar radiation

\[\text{without CO}_2, \text{ Earth's surface T would be } \sim 25^\circ C \]

Incoming solar radiation \(\sim 300 \text{ W/m}^2 \)

Compare to geothermal heat flow \(80 \text{ mW/m}^2 \)

WHAT CONTROLS CO$_2$ THROUGH TIME?
Carbon comes in different forms (oxidation states)

- C-4 methane
- C0 graphite, diamond, [CH\textsubscript{2}O]
- C+2 carbon monoxide
- C+4 CO\textsubscript{2}, CaCO\textsubscript{3}

Increase oxidation state + oxygen

\[
C + \frac{1}{2}O\textsubscript{2} = \text{CO}_2
\]
\[
\text{CH}_2\text{O} + O\textsubscript{2} = \text{CO}_2 + H_2O
\]
\[
\text{CH}_4 + 2O\textsubscript{2} = \text{CO}_2 + 2H_2O
\]

Today's Earth

\[
\text{CO}_2 \quad \text{ mantle} \quad \text{CH}_2\text{O} \quad \text{CaCO}_3
\]

Photosynthesis \[
\text{CO}_2 + H_2O + \text{sun} = \text{CH}_2\text{O} + O_2
\]
Free oxygen is produced

Carbonate precipitation

organic C

organic C
Carbonate Precipitation

\[\text{CO}_2(g) \rightarrow \text{CO}_2(l) \]
\[\text{CO}_2 + \text{H}_2\text{O} = \text{H}_2\text{CO}_3 \]
\[\text{H}_2\text{CO}_3 = \text{H}^+ + \text{HCO}_3^- \]

\[\text{Ca}^{2+} + \text{HCO}_3^- = \text{CaCO}_3 + \text{H}^+ \]

or
\[\text{Ca}^{2+} + \text{CO}_2 + \text{H}_2\text{O} = \text{CaCO}_3 + 2\text{H}^+ \]

\[\text{Ca}^{2+} \text{ exists} \]

\[\text{f}_{\text{org}} = 20\% \]

organic C

\[\rightarrow \text{production of O}_2 \]

changes N, S, P, Fe cycling

\[\text{CO}_2 \]

\[\rightarrow \text{Carbonate CaCO}_3 \]

80%
\[
\frac{dM}{dt} = P - J_{out}
\]

\(J_{out}\) should be proportional to mass of C in ocean/atmosphere M

\(J_{out} \propto M\)

\(J_{out} = kM\)

\[
\frac{1}{k} = \text{residence time}
\]

\[
\tau = \frac{M}{J_{out} J_{in}}
\]

at steady state \(M = \frac{P}{k} \]

\[
M = \frac{P}{k} (1 - e^{-kt}) + M_0 e^{-kt}
\]
\[
\frac{dM}{dt} = P - kM
\]

- negative feedback

\[k\] is a measure of efficiency of C build

negative feedback which buffers system.

\[k\] is often called the weathering feedback

\[CaSiO_3 + CO_2 = CaCO_3 + SiO_2\] (net rxn)

\[\uparrow\]

\[CO_2\] in form of acid rain

dissolves calcisilicates

\[P\] is production of volcanic gases or any

other origin

Negative feedback prevents runaway

\[T_{out} = kM\]

- in a linear system

increase \[M\] by increasing \[P\] or by changing \[k\]
\[\text{increase } P \text{ to increase } M \]

\[P \text{ constant} \]
- change efficiency of \(k \)
 - if \(k_1 \) decreases to \(k_2 \)
 - \(M_1 \) increases to \(M_2 \)

\(P \) controlled by degassing from mantle

\(k \) - silicate weathering \(\rightarrow \) carbonate precipitation
 - more orogeny \(\uparrow k \)
 - higher \(T \) \(\uparrow k \)
 - more basalt \(\uparrow k \)
 - cooler \(\downarrow k \)
 - more rain \(\uparrow k \)
Runaway

Jout is not linear

- transport limited
- threshold limited

For example, if erosion rates are too fast compared to chemical dissolution rates, weathering feedback decreases

If weathering stops because kinetics freeze up...

E.g. if \(T \) is too low, or water too low then \(k \) decreases

\[J \]

\[\text{kinetic limited} \]

\[M \]

- perhaps \(\text{CO}_2 \) \(\downarrow \), then \(T \) \(\downarrow \) and precipitation \(\downarrow \)

\[M_0 \]

\[M \text{ steady state} \]

\[\text{snowball} \]

Runaway greenhouse
Deep Earth

\[\text{Subduction} \rightarrow 2 \times 10^{-2} \text{ Gt} \rightarrow \text{Arc} \rightarrow 5 \times 10^{-2} \text{ Gton/y} \]

Mantle

1-10 \times 10^8 \text{ Gt C}

C. in mantle \sim 4 \text{ Gt} \text{ or more}
\[\text{Fluxes } G+C \quad \text{mass } G+C \]

\[\begin{align*}
\text{Atmosphere} & \quad 615 \\
\text{Biosphere} & \quad 731 \\
\text{Soil} & \quad 1238 \\
\text{Surface Ocean} & \quad 842 \\
\text{Intermediate} & \quad 9744 \\
\text{Deep Ocean} & \quad 26,280 \\
\text{Sediments} & \quad 9,000,000 \\
\end{align*} \]

- for ocean, atmosphere, biosphere = 170,000 y
- for soils = 20 y
- for total ocean = 614 y
- for surface ocean \sim 10 \text{ years}
- for surface + intermediate \sim 10 \text{ years}
- for biosphere 10 years

* Modern anthropogenic emission 10 Gtons C/yr
Questions

* What is response time, residence time?
* What controls steady state?

$> My \text{ timescale}$

$P(t) - \text{ tectonics}$

$K - \text{ weathering}$

$< 100 \text{ ky timescales}$

$P(t) - \text{ ocean degassing}$

$K - \text{ biosphere and ocean uptake}$

'Solar insolation'

$< 1000 \text{ y}$

$P(t) - \text{ biosphere, anthropogenic}$

$K - \text{ biosphere + ocean uptake}$