On the relationship between CO₂ and CaCO₃

The purpose of this addendum is to clarify, as simply as possible, the relationship between CO_2 and $CaCO_3$ in an aqueous carbonate system. The relevant carbonate equilibria are shown below. In the ocean, there are other equilibria, too, which we are omitting here for clarity.

$\mathrm{CO}_{2(g)} \rightleftharpoons \mathrm{CO}_{2(\mathrm{aq})}$	$K_0 = \frac{[\mathrm{CO}_{2(aq)}]}{p\mathrm{CO}_2}$
$\rm CO_{2(aq)} + \rm H_2O \rightleftharpoons \rm H^+ + \rm HCO_3^-$	$K_1 = \frac{[\text{H}^+][\text{HCO}_3^-]}{[\text{CO}_{2(aq)}]}$
$HCO_3^- \rightleftharpoons H^+ + CO_3^{2-}$	$K_2 = \frac{[\text{H}^+][\text{CO}_3^2^-]}{[\text{HCO}_3^-]}$
$CaCO_3 \rightleftharpoons Ca^{2+} + CO_3^{2-}$	$K_{\rm sp} = [{\rm Ca}^{2+}][{\rm CO}_3^{2-}]$

It is also useful to introduce $\sum CO_2$, the total amount of dissolved inorganic carbon in the system, and Alkalinity, the amount of H⁺ required to titrate DIC to neutrality:

$$\sum CO_2 = [CO_{2(aq)}] + [HCO_3^-] + [CO_3^2^-]$$

Alkalinity = [HCO_3^-] + 2 × [CO_3^2^-]

These expressions do not depend directly on pH. Note that carbonate precipitation decreases $\sum CO_2$ by removing CO_3^{2-} from the system, whereas respiration of organic matter increases $\sum CO_2$ by adding $CO_{2(aq)}$ to the system. Precipitation also decreases Alkalinity by 2 units for each unit of CO_3^{2-} removed from the system.

Respiration of organic matter increases $[CO_{2(aq)}]$ and $\sum CO_2$. It will acidify the water, mainly through the equilibrium K_1 (Le Châtlier's principle says the reaction goes to the right), but also somewhat through K_2 as $[HCO_3^-]$ increases. Every unit increase in $[CO_3^{2-}]$ through the reshuffling of DIC species is accompanied by 2 units of $[H^+]$. However, because both K_1 and K_2 contain $[H^+]$ terms, this reshuffling actually places K_2 out of mass balance. CO_3^{2-} cannot be sourced from DIC without also adding $[H^+]$. Something else has to donate CO_3^{2-} in order to maintain equilibrium for K_2 . That something is CaCO₃, which dissolves to meet the "demand" for CO_3^{2-} . We then arrive at a familiar idea, that the addition of $CO_{2(aq)}$ results in CaCO₃ dissolution.

Consider, then, what happens when CaCO₃ precipitates. $\sum CO_2$ decreases when CO₃²⁻ is removed as CaCO₃, but H⁺ is not consumed in the process. As a result, there is an excess of H⁺. During the DIC reshuffling process, the only way to balance the DIC species is actually to "get rid" of some H⁺. For example, Le Châtlier's principle could push K_2 to the right (there is not enough CO₃²⁻), but that would exacerbate the [H⁺] problem. The only way to rebalance the DIC pool is to react H⁺ with HCO₃⁻. There is thus a further drop in $\sum CO_2$ through CO₂ release. Henry's law still applies, so the increase in [CO_{2(aq)}] from CaCO₃ precipitation also ends up increasing pCO₂.