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ABSTRACT

As a molten alloy or any multi-component liquid is cooled and solidified the
growing solid phase usually forms a porous matrix through which the residual
liquid can flow. The reactive two-phase medium comprising the solid matrix and
residual liquid is called a mushy layer. Buoyancy forces, owing primarily to com-
positional depletion as one or more of the components of the alloy are extracted
to form the solid phase, can drive convection in the layer. In this review, I present
an account of various studies of buoyancy-driven convection in mushy layers,
paying particular attention to the complex interactions between solidification and
flow that lead to novel styles of convective behavior, including focusing of the
flow to produce chimneys: narrow, vertical channels devoid of solid. I define
an ‘ideal’ mushy layer and argue that chimneys are an inevitable consequence of
convection in ideal mushy layers. The absence of chimneys in certain laboratory
experiments is explained in terms of nonideal effects.

1. INTRODUCTION

Solidification is a process that has only recently captured the attention of the
fluid-mechanics community. Yet, as illustrated in a review by Huppert (1990),
a wide range of fluid-mechanical phenomena can occur as a direct consequence
of the solidification of a liquid melt. Additionally, the flow of melt in the vicinity
of a growing solid can have profound consequences for the structure and com-
position of the solidified product (Langlois 1985, Davis 1990, Hurle 1992).
Many interesting and important interactions between solidification and fluid
flow take place while the solid and liquid are separated by a geometrically sim-
ple interface, such as a planar or gently curved interface. Such cases can be
described mathematically using the usual equations of fluid flow (the Navier–

91
0066-4189/97/0115-0091$08.00

A
nn

u.
 R

ev
. F

lu
id

. M
ec

h.
 1

99
7.

29
:9

1-
12

2.
 D

ow
nl

oa
de

d 
fr

om
 a

rj
ou

rn
al

s.
an

nu
al

re
vi

ew
s.

or
g

by
 C

A
M

B
R

ID
G

E
 U

N
IV

.M
E

D
.L

IB
. o

n 
04

/2
6/

06
. F

or
 p

er
so

na
l u

se
 o

nl
y.



    

November 28, 1996 14:26 Annual Reviews WORSTEXT AR23-04

92 WORSTER

Figure 1 A close-up photograph of a mushy layer grown from an aqueous solution of ammonium
chloride showing the individual dendrites that make up the solid matrix. The typical spacing be-
tween the dendrites shown is about 0.5 mm, while the depth of the mushy layer is a few centimeters.

Stokes equations) and of heat and mass transfer. The main novelty and interest
lie in determining the evolution of the solid–liquid interface, which is a free
boundary. For example, in many situations, the interface is found to be morpho-
logically unstable (Mullins & Sekerka 1964) and in practice becomes highly
convoluted within a “mushy layer” (Figure 1) in which solid and liquid are
intermingled in close proximity. Many fluid-mechanical studies have analyzed
the effects of various types of flow of the melt on the criteria for morphological
instability (Glicksman et al 1986, Davis 1990). These have been motivated
in part by a quest to discover means of suppressing instability and hence of
producing single crystals of higher quality for the semiconductor industry.

Rather less attention has been paid to fluid flow within mushy layers. Yet
such layers are ubiquitous in systems that solidify in the natural environment
and are, therefore, not subject to the careful controls used to produce single
crystals industrially. They are also common in large alloy castings, whose
structural quality can be severely impaired by the effects of fluid flow within
the mushy layer during production.

The fluid mechanics of mushy layers is quite different from that of wholly
molten regions. In essence, a mushy layer is a porous medium (Phillips 1991)
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through which the interstitial melt can flow. However, the permeability
structure of the mushy layer is not known in advance but must be calculated
simultaneously with solving the coupled equations of heat, mass, and momen-
tum transport. Fascinating and unsuspected interactions can occur between
solidification and flow within mushy layers. These are the subject of this ar-
ticle, in which I describe some of the fluid-mechanical predictions that have
been made of the evolution of mushy layers and discuss how these relate to
experimental measurements and observations made in a variety of industrial
and environmental situations.

Although flow in mushy layers can be driven by a variety of mechanisms,
most attention has been paid to natural, buoyancy-driven convection. Natu-
ral convection during solidification can be driven by two agents: the melt is
inevitably cooled in order for it to solidify, and the consequent temperature
gradients give rise to thermal convection; in addition, if the melt is a mixture
(alloy) of different components, then compositional convection can be driven
by gradients in concentration generated in the melt as one or more of the compo-
nents are preferentially incorporated into the solid. Even given the very simple
geometry of a melt being cooled at an upper or a lower horizontal boundary,
six different fluid-mechanical regimes are possible, depending on the differ-
ent combinations of thermal and compositional buoyancy (Huppert & Worster
1985). Here I focus on the single case of a two-component liquid cooled from
below to form a solid leaving a less-dense residual liquid. This seemingly nar-
row focus nevertheless encompasses many of the fluid-mechanical phenomena
peculiar to mushy layers. To fix ideas, we can think of an aqueous salt solution
being cooled from below to form a mushy layer comprising a matrix of solid
salt crystals bathed in residual solution such as that shown in Figure 1. In this
situation, a one-dimensional, vertically stratified state is possible in which the
compositional buoyancy is destabilizing and the thermal buoyancy is stabilizing.

This combination of stable thermal buoyancy and unstable compositional
buoyancy can lead to convection in the form of double-diffusive fingers in
the liquid region (Turner 1979, 1985). However, within the mushy layer the
temperature and concentration of the liquid are strongly coupled (as described
below) and the buoyancy field is typically dominated by the concentration field,
so no double-diffusive effects occur there.

In this review, I define and discuss the behavior of what might be termed an
“ideal” mushy layer. The ideal mushy layer has a fluid phase that is isotropic and
Boussinesq. The solid in an ideal mushy layer forms a stationary rigid matrix,
whose permeability is locally isotropic and a function only of the local void
fraction (but see caption of Figure 2). Above all, the solid and liquid phases in an
ideal mushy layer are in perfect, local thermodynamic equilibrium. Of course,
the ideal mushy layer is a theoretical construct, but there is much experimental
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evidence that many real mushy layers conform closely to the predicted behavior
of the ideal. There is experimental evidence, too, that some mushy layers
behave differently from the ideal. In such cases, the theoretical predictions of
the evolution of ideal mushy layers provide a useful basis for comparison by
which the physical reasons for the nonconformity can be elucidated.

One of the most striking consequences of natural convection in mushy layers
is the formation of “chimneys”. These are narrow, essentially vertical vents,
devoid of solid, from which emanate plumes of buoyant, salt-depleted solution
(Figure 2). Much of this article is focused on the natural convection within
mushy layers that is responsible for the formation of chimneys, though other
types of convection are described as well.

Chimneys have most commonly been studied in the laboratory by solidifying
aqueous solutions of ammonium chloride (see, for example, Copley et al 1970,
Chen & Chen 1991, Tait et al 1992). There is also evidence of chimneys in
metallic castings (Sarazin & Hellawell 1988), and recent experiments carried
out by JS Wettlaufer, HE Huppert, and myself have revealed chimneys forming
in mushy layers of ice grown from sea water. In Figure 2, I show additional
evidence of chimneys in a mushy layer of ice crystals grown from a mixture
of water and isopropanol. However, chimneys have failed to appear in many
laboratory experiments using other aqueous salt solutions (Huppert 1990). This
is an indication that modifications may be required to the theory of ideal mushy
layers if all experimental observations are to be understood.

We begin in Section 2 by defining an ideal mushy layer and describing the
equations that govern its evolution. Then, in section 3, the different modes of
convection in the liquid and mushy regions that can occur during solidification

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Figure 2 (a) A shadowgraph image of buoyant plumes emanating from chimneys in a mushy
layer. The mushy layer is the black region at the bottom of the photograph and was about 9 cm
deep when the photograph was taken. The solid phase of the mushy layer is ice growing from a
mixture of water and isopropanol. The residual liquid in the mushy layer is enriched in isopropanol,
is therefore less dense than the overlying liquid mixture and escapes through chimneys to form
the plumes shown in the photograph. Photographs (b) and (c) are taken in plan view of the tops
of mushy layers, showing chimney vents. The solid phase in (b) comprises crystals of ammonium
chloride grown from aqueous solution, whereas the solid phase in (c) comprises ice crystals grown
from a mixture of water and isopropanol. Evidently, chimneys can occur in mushy layers of very
different internal morphology. In both cases the diameters of the chimneys are about 2–3 mm, as
indicated by the rulers in the photographs. It is noteworthy that the spacing between chimneys in
mushy layers of ammonium chloride is comparable to the depth of the layer, whereas the spacing
between the chimneys in the mushy layer of ice shown in (c) is about one fifth of the depth of the
layer. This is likely to be a consequence of the fact that the permeability in the latter case is more
strongly orthotropic: the permeability to flow in the vertical direction is larger than the permeability
in horizontal directions. This nonideal feature of mushy layers has not yet received much attention.
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(a)
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(b)

(c)

Figure 2 (Continued)
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are discussed. Attention is focused in section 4 on convection that takes place
entirely within the mushy layer. The significant dynamical interactions within
the mushy layer are revealed by considering an asymptotic limit in which the
mushy layer behaves as a passive porous medium and by systematically rein-
troducing terms into the equations. In this way, we shall review and place in
context the various studies of linear and weakly nonlinear convection within
mushy layers. The nonlinear studies reveal how the convective flow becomes
focused into narrow regions of upflow that eventually become chimneys. In
section 5, analyses of fully-developed chimneys are described, which have the
aim of determining the overall fluxes from a convecting mushy layer. The ex-
perimental evidence for and against chimneys is discussed in section 6 along
with suggestions for why chimneys may not form in nonideal mushy layers.
The article concludes with a brief discussion of some of the applications of the
theory of natural convection in mushy layers.

2. THE IDEAL MUSHY LAYER

Mathematical descriptions of mushy layers date back to metallurgical papers
by Flemings & Nereo (1967), Mehrabian et al (1970) and Fujii et al (1979).
These early studies aimed principally to relate measurements that could be made
readily during casting, such as the temperature, to properties of the solidified
product, such as the distribution of bulk composition. It is only in the last
decade or so that equations have been formulated and solved in order to make
predictionsab initio of solidification processes involving convection in mushy
layers. All such mathematical models have as independent variables local
mean properties of the mushy layer: mean temperature; mean concentration;
and mean solid fraction. In all cases, the mean is taken (either formally or
implicitly) over “infinitesimal” regions of the mushy layer that nevertheless
contain representative distributions of liquid and solid phases. There are many
assumptions made in taking such averages which are discussed in detail in the
articles referenced below.

Different approaches to the formulation of governing equations have been
taken by different authors. Conservation equations derived at the continuum
level, with averaging implicit in their derivation, have been formulated by
Fowler (1985) and Worster (1986) and reviewed by Worster (1992a). Still
at the continuum level but using the formalism of thermodynamics, Hills et al
(1983) based a derivation of governing equations on diffusive mixture theory.
On the other hand, Emms (1993) has carried out an explicit averaging of gov-
erning equations for each phase. All of these models are expressed in terms
of the primitive variables of temperature and concentration. An alternative ap-
proach is to replace temperature by enthalpy as a primary dependent variable,
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which allows a single set of equations to describe both liquid and mushy re-
gions. Equations of this sort have been derived, with explicit averaging, by Ni
& Beckermann (1991) among others. They offer some computational advan-
tages for full-scale numerical modeling but have been less used in analytical
studies.

A fundamental distinction between the various formulations of mushy-layer
equations is between those that employ mass-averaged variables and those that
employ volume-averaged variables. When employing mass averaging it is usual
to describe flow in terms of the barycentric velocity: the velocity of the local
center of mass of the two phase medium. This has a natural interpretation in
describing diffusively mixed fluid phases but is much less appropriate when one
of the phases (here the solid matrix) is stationary. The flow through a mushy
layer is better described by the local volume flux of liquid per unit area, or
Darcy velocity (Phillips 1991).

The following equations define, at least for the purposes of this article, an
ideal mushy layer. They encapsulate the essential physical interactions involved
in all the formulations mentioned above. They are capable of describing all
phenomena that have so far been determined theoretically. And they have the
advantage of being simple and notationally familiar in the context of convective
fluid dynamics. Their derivation (in a slightly more general form) can be found
in Worster (1992a).

The flow through an ideal mushy layer is described by Darcy’s equation

µu = 5∗(−∇ p+ ρg), (1)

which is the simplest description of flow through a porous medium. Hereu
is the Darcy velocity,p is the dynamic pressure,µ is the dynamic viscosity
of the liquid andg is the acceleration due to gravity. The permeability5∗(χ)
is a function of the local liquid volume fractionχ = 1− φ, whereφ is the
local volume fraction of solid. The density of the liquid is expressed as a linear
function,

ρ = ρ0[1− α∗(T − T0)+ β∗(C − C0)], (2)

of its concentrationC and the temperatureT , whereρ0, T0 andC0 are reference
values, andα∗ andβ∗ are expansion coefficients for heat and salt, respectively.
The interior of an ideal mushy layer is assumed to be in local thermodynamic
equilibrium so that the temperature and the concentration of the liquid are
coupled by the linear liquidus relationship (graphed in Figure 3)

T = TL(C) ≡ TE + 0(C − CE), (3)

where0 is the constant slope of the liquidus. The equation of state (2) thus
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Figure 3 The equilibrium phase diagram of a typical eutectic binary alloy. The shaded regions
show what phases exist in equilibrium in a sample of given bulk compositionC and uniform
temperatureT . When the temperature is above the liquidus curve, the sample is completely liquid.
In the region between the liquidus and the solidus, solid and liquid coexist in equilibrium, with the
composition of the liquid phase equal to the liquidus concentration and the composition of the solid
phase equal to the solidus concentration at the given temperature. This is the state in the interior
of an ideal mushy layer. In general, the solid phase is a “solid solution” of the two components of
the alloy: molecules of component B sit in a lattice of mostly A molecules (for example). In many
cases the lattice parameters are such that solid solutions are not possible and the solid formed is
almost pure, as shown on the right of the diagram. Below the eutectic temperatureTE , a composite
solid forms composed of crystals of both of the end members of the alloy. In an ideal mushy layer,
the liquidus is taken to be linear, as shown on the right.

adopts the simpler form

ρ = ρ0[1+ β(C − C0)], (4)

whereβ = β∗ − α∗0.
Conservation of mass is expressed by the equation

∇ · u = −ρs − ρ
ρ

∂φ

∂t
, (5)

whereρs is the density of the solid phase, and the Boussinesq approximation is
invoked so that the density is constant except insofar as it modifies the buoyancy
of the fluid. Equation 5 shows that the velocity field in a mushy layer is gener-
ally nonsolenoidal. The expansion or contraction that occurs on solidification
of a liquid drives a flow in the absence of any external force, which can be
significant in effecting global redistribution of solute (macro-segregation) in a
casting (Petersen 1987, Schneider & Beckermann 1992, Chiareli et al 1994).
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The flow can in principle also lead to instabilities that would result in lateral
inhomogeneities developing during casting (Chiareli & Worster 1995) by a
mechanism akin to the acid-etching instability in porous rocks (Chadam et al
1986, Sherwood 1987, Hinch & Bhatt 1990), though it seems unlikely that the
criteria for instability will be met in practice. Here I restrict the definition of
the ideal mushy layer by settingρs = ρ so that∇ · u = 0.

Conservation of heat is described by the advection-diffusion equation(
∂T

∂t
+ u · ∇T

)
= κ∇2T + L

Cp

∂φ

∂t
, (6)

whereκ is the thermal diffusivity,Cp is the specific heat capacity andL is
the latent heat per unit mass. The final term of this equation represents a heat
source, which is due to the latent heat released as the melt solidifies within
the interstices of the mushy layer. It provides an important coupling with the
equation expressing conservation of solute

(1− φ)∂C

∂t
+ u · ∇C = (C − Cs)

∂φ

∂t
, (7)

whereCs is the composition of the solid phase. Diffusion of solute is neglected
in an ideal mushy layer. This is justified on the grounds that the local con-
centration is tied to the temperature via the liquidus relationship and that in all
systems of interest heat diffuses much faster than solute.

In principle, the solid fractionφ evolves in a way determined by interstitial
gradients of heat and solute and by the specific surface area of internal phase
boundaries. In an ideal mushy layer such interstitial gradients do not exist.
Rather it is assumed that the specific surface area is sufficiently large to allow
instantaneous relaxation of the solid fraction to achieve the equilibrium state
described by Equation 3.

It is important to the fluid dynamics of mushy layers that they exist in a
solidifying system so that the phase boundaries are continuously evolving. For
example, in a continuous casting process phase boundaries advance at a constant
rate, and during growth from a fixed, cooled boundary the phase boundaries ad-
vance proportional to the square root of time in the absence of convection. This
makes convection in a mushy layer qualitatively different from convection in a
Bénard cell that is stationary in a laboratory frame of reference. This inherent
state of being nonstationary is most easily analyzed by considering systems that
are solidifying at a constant rateV , as shown in Figure 4. Given this geometry,
we can produce a set of dimensionless equations by scaling velocities withV ,
lengths withκ/V , time withκ/V2 and by writing

θ = T − TE

1T
= C − CE

1C
, (8)
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Figure 4 A schematic diagram of an alloy solidifying at a prescribed constant rateV . The alloy is
completely solid where the temperature is below the eutectic temperatureTE . The profiles on the
left show the temperature fieldT and the local liquidus temperatureTL (C) in the nonconvecting
state. These give rise to the density fieldsρT andρC , respectively, as shown in the diagram. The
total densityρ is unstably stratified in the mushy layer and in a narrow boundary layer just above
the mush–liquid interface. The thermal field creates a stable stratification throughout most of the
liquid region.

where1T = TL(C0)−TE = 01C, andTE andCE are the eutectic temperature
and composition.

The full set of dimensionless equations describing the interior of an ideal
mushy layer is then

∂θ

∂τ
+ u · ∇θ = ∇2θ + S

∂φ

∂τ
(9)

∂

∂τ
[(1− φ)(θ − C)] = −u · ∇θ (10)

u = Rm5(χ) [−∇ p− θk] (11)

∇ · u = 0 (12)

where ∂
∂τ
≡ ∂

∂t − ∂
∂z, k is a unit vector in the vertical direction and where

the permeability5 has been made dimensionless with respect to a suitable
reference value50.

The dimensionless parameters governing convection in an ideal mushy layer
are the Stefan number

S= L

Cp1T
(13)

a compositional ratio

C = Cs − CE

1C
(14)
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and a Rayleigh number

Rm = ρ0β1Cg50

µV
. (15)

The Stefan number measures the amount of latent heat that must be removed
to effect the change of phase relative to the sensible heat that must be removed
to cool the liquid from its liquidus to its solidus temperature. The ratioC gives
the difference in composition between the liquid and solid phases relative to
the compositional variation within the liquid phase. It plays a similar role for
convection to that the Stefan number plays for heat. The Rayleigh number
Rm is similar to that for convection in a porous medium and measures the
buoyancy force, primarily due to compositional differences, relative to the
viscous dissipation in the porous medium.

The term in square brackets in Equation 10,(1− φ)(θ − C), is the local
bulk compositionC̄, averaged over both solid and liquid phases. Therefore,
Equation 10 expresses the fact that bulk redistribution of solute in a mushy layer
only occurs as a result of fluid transport.

The dynamics of the mushy layer are influenced by the fluid flow and heat
transfer in the liquid region above it. These are described by the usual equa-
tions of convective fluid mechanics. We do not dwell on the dynamics of
the liquid region here except to note that the coupling between the liquid and
mushy regions depends principally on two further dimensionless parameters:
the dimensionless far-field temperature

θ∞ = T∞ − TE

1T
(16)

and a mobility ratio

H = (κ/V)2

50
. (17)

The far-field temperature affects the depth of the mushy layer by influencing
the heat flux transferred from the liquid region. For example, in the steady,
nonconvecting state, it has been shown by Fowler (1985) and by Worster (1991)
that the dimensionless depth of the mushy layerδ ∼ 1/θ∞ whenθ∞ � 1. The
mobility ratioH is proportional to the square of the ratio of the depth of the
mushy layer to the spacing between dendrites. It is therefore typically very large,
in which case the dynamical influence of the liquid region reduces to a condition
of constant pressure applied to the mush–liquid interface (Fowler 1985).

Equations 9–12 constitute a definition of an ideal mushy layer. They en-
capsulate the major known physical interactions that determine the evolution
of mushy layers. Minor extensions to these equations, allowing for the solid
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and liquid phases to have different physical and thermodynamic properties, can
readily be made and are incorporated in the more general description given by
Worster (1992a). Such extensions are necessary if accurate quantitative pre-
dictions are to be made but do not qualitatively affect the phenomenology of
the mushy layer.

3. LINEAR CONVECTIVE INSTABILITY

3.1 The Full System
There are steady, nonconvecting solutions to Equation 9–12, coupled with the
equations for diffusion of heat and solute in the liquid region (Hills et al 1983,
Fowler 1985, Worster 1991). They are characterized by temperature and con-
centration fields that give rise to the density profiles sketched in Figure 4
(Worster 1992b). It is apparent that there is an unstable density difference
across the mushy layer and a much smaller, unstable density difference across a
compositional boundary layer in the liquid just above the mush–liquid interface.
Although the dominant forcing is within the mushy layer, the liquid in the com-
positional boundary layer is much more mobile. In fact the Rayleigh number
characterizing the boundary layerRl scales withε3HRm, whereε = D/κ � 1
(D is the diffusivity of salt) andH � 1 is the mobility ratio described earlier
(Tait & Jaupart 1989, Worster 1992b). The small factorε3 reflects the thin-
ness of the boundary layer relative to the depth of the mushy layer as well as
the smallness of the density contrast across it relative to that across the mushy
layer. It is countered by the greater mobility of the liquid region, characterized
byH.

A detailed linear stability analysis (Worster 1992b) revealed that the marginal
stability curve for direct (nonoscillatory) modes of convection is typically bi-
modal, as illustrated in Figure 5. There is a “boundary-layer mode” of convec-
tion on length scales characteristic of the thickness of the compositional bound-
ary layer and a “mushy-layer mode” on longer length scales characteristic of
the depth of the mushy layer. Broadly speaking, onset of the boundary-layer
mode is determined by the magnitude ofRl , while onset of the mushy-layer
mode is determined byRm. Figure 5 was produced withRl ≈ 1.56Rm and we
see that the two modes are triggered almost simultaneously.

It is difficult to measure the permeability of the mushy layer, though sensible
estimates can be made (e.g. Tait & Jaupart 1992, Ganesan et al 1992). Using
these, it can be determined thatRm andRl have comparable magnitudes (within
the uncertainties of the estimates) in typical laboratory experiments using aque-
ous solutions of ammonium chloride. However, there is experimental evidence
that typicallyRl > Rm since it is usual to see fine-scale convection arising from
the neighborhood of the mush–liquid interface (in the form of double-diffusive
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Figure 5 The marginal stability curve corresponding to the compositional density fieldρC shown
in Figure 4. The curve has two minima corresponding to two modes of steady convection that can
occur. There is a boundary-layer mode at large wavenumber (small wavelength) and a mushy-layer
mode at a smaller wavenumber.

fingers) well before any discernable fluid motion in the mushy layer (Tait &
Jaupart 1989, Chen & Chen 1991, Chen 1995) or the appearance of chimneys.

The linear stability analysis was extended by Chen et al (1994) to include
the possibility of oscillatory onset. They found that the two direct modes can
separate by means of an oscillatory connection as the stable thermal buoyancy
increases. With hindsight, such oscillations might have been anticipated on
the grounds that the region of stable buoyancy in the liquid above the mushy
layer can support internal gravity waves. The results of Chen et al (1994)
suggest further that the oscillations they found arise from a linear interaction
between a one-cell mode and a two-cell (vertically stacked) mode in the liquid
region. It is also possible that oscillatory convection in a mushy layer has an
entirely different origin, as we shall see below. Oscillatory convection was
in fact first discovered by Nandapurkar et al (1989) but since their numerical
analysis was conducted using particular dimensional parameters and covered
only a fraction of the marginal curve, it was difficult to ascertain the cause of the
oscillations.

Given that, experimentally, double-diffusive fingers are well developed in the
liquid region before the genesis of chimneys, it is appropriate to ask what influ-
ence such convection has on the onset of the mushy-layer mode. This question
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was answered by Emms & Fowler (1994), who showed that the fingers produce,
in the mean, an enhancement of the thermal diffusivity of the liquid. However,
the effect is very small and for practical purposes can be ignored.

All indications to date are that the experimental observations relating to
chimney formation in mushy layers are entirely consistent with the nonlinear
development of the nonoscillatory, mushy-layer mode of convection. For this
reason, it has proved expedient to consider restrictions of the mathematical
model that eliminate any interaction between the liquid and mushy regions.

3.2 A Restricted Model
The full system of mushy layer and overlying liquid region is mathematically
very cumbersome. The equations are fifth-order in the mushy layer, eighth-
order in the semi-infinite liquid region, and there is a free interface between
the two domains. This makes even a linear-stability analysis challenging and a
nonlinear analysis of the full equations presently inconceivable. For this reason,
restrictions to the model have been sought that allow greater progress while not
compromising the essential physical interactions intrinsic to the evolution of
the mushy layer.

In this section, I present equations that are simply illustrative of the physical
interactions retained in each restricted study. The actual equations solved in
each case were much more detailed and were formally derived using appropriate
asymptotics from the full equations.

Fowler (1985) was the first to suggest reducing the governing equations
by taking asymptotic limits of the controlling dimensionless parameters. He
introduced a “near-eutectic” approximation in which the initial (or far-field)
concentrationC0 is assumed to be very close to the eutectic concentration
CE. Using the notation of Section 2, his approximation is equivalent to taking
C → ∞ andθ∞ → ∞ with θ∞/C = O(1). This has recently been shown to
be a singular limit for the full time-dependent equations (Anderson & Worster
1995) but it gives the correct leading-order behavior both for the state with no
fluid motion and for marginal linear stability of that state.

The near-eutectic limit has the effect of making the dimensionless thickness of
the mushy layerδ � 1 and the solid fractionφ � 1: specifically,δ = O(θ−1

∞ )
and φ = O(C−1). Sinceφ � 1 in this limit, it is important to adopt a
permeability function5(χ) that remains bounded asφ → 0, χ → 1. The
most important consequence of the near-eutectic approximation is that one
recovers exactly the classical problem of convection in a nonreacting porous
layer (Horton & Rogers 1945, Lapwood 1948, Palm et al 1972). The solute-
conservation equation (Equation 10) decouples from the other equations, the
linearized versions of which describe the onset of convection in a passive porous
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medium. This can be represented by

Ẇ = (R− 1)W, (18)

whereW represents a (vertical) velocity which grows exponentially when the
Rayleigh numberRexceeds a critical value, here set equal to unity. The solute-
conservation equation then simply determines how the solid fraction evolves in
response to the velocity field, and is essentially described by

φ̇ = −C−1W. (19)

Where there is upflow(W > 0), the solid fraction decreases as a consequence
of cold but dilute fluid dissolving the crystals around which it flows. A parcel of
fluid raised upwards finds itself colder and fresher than its new surroundings. It
warms quickly by thermal diffusion but retains its composition since the solutal
diffusivity is small (equal to zero in an ideal mushy layer) relative to the thermal
diffusivity. This much is true even in a non-reacting porous medium. In a mushy
layer, however, the parcel of fluid, being now of similar temperature but lower
concentration than its surroundings, is undersaturated and partly dissolves the
solid phase until its concentration is equilibrated with the local liquidus.

This is a fundamental property of flow in mushy layers—that dissolution
occurs where there is a component of flow parallel to the local temperature
gradient (from cold to warm). This mechanism for producing channels within
mushy layers has long been known to metallurgists (Flemings 1974), who
developed the criterion, elucidated by Fowler (1985),

(u− V) · ∇T > 0 (20)

for when channels will form, whereV is the solidification rate.
The near-eutectic approximation, as described so far, contains none of the

coupled interactions between solidification and flow that distinguish convec-
tion in mushy layers from classical fluid convection and make its study so
fascinating. However, it makes an excellent foundation, being a limit that is
well understood and to which other effects can be added as small perturbations.

A physical process intrinsic to mushy layers is the release of latent heat as
the solid fraction increases. This can be reintroduced into the near-eutectic
equations by takingS= O(C), instead ofS= O(1) as before. The essential
effect of this distinguished limit, introduced by Emms & Fowler (1994), is
illustrated by a modified version of Equation 18:

Ẇ = (R− 1)W − Sφ̇. (21)

The added term needs some explanation. Given that the interior of the mushy
layer is constrained by the liquidus relationship, it adjusts to phase changes as
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follows. During solidification, the release of latent heat, proportional toφ̇, tends
to warm the mushy layer. The liquidus constraint then requires the interstitial
liquid to become saltier and, therefore, heavier, which tends to retard growth
of the vertical velocity.

The release of latent heat would appear to couple the convection, represented
by Equation 21, to the evolution of the solid fraction, represented by Equation
19. However, these equations are readily combined to give the uncoupled
convection problem

Ẇ = (R− 1+ S/C)W, (22)

derived in full by Emms & Fowler (1994). This equation illustrates the initially
surprising result that linear disturbances are more unstable when the latent heat
is large (Worster 1992b). When the Stefan number is large, a given thermal
perturbation can dissolve less of the solid phase and hence there is less heavy
solute introduced into the liquid.

Another surprise comes from considering more closely the structure of the
solute-conservation equation (Equation 10) which is better modeled by

φ̇ + V(φ − φe) = −C−1W, (23)

than by Equation 19. The additional term on the left-hand side, proportional to
V , reintroduces the fact that the system is continuously being solidified. There-
fore, in the absence of flow(W = 0), the system relaxes to an equilibrium state
φ = φe. This occurs at a rate proportional to the background solidification rate
V . The additional term, though apparently causing a decay of perturbations to
the solid fraction, can actually destabilize the system to an oscillatory mode of
convection that can set in before the steady mode found previously. This can
be seen by combining Equations 21 and 23 to give(

Ẇ
φ̇′

)
=
(

R− 1+ S/C SV
−C−1 −V

)(
W
φ′

)
, (24)

whereφ′ = φ − φe. The possibility of oscillations is evident from the fact that
the off-diagonal terms have opposite signs. The characteristics of the eigenso-
lutions of Equation 24 are shown in Figure 6, the topology of which is preserved
by the full system of Equations 9–12 (Anderson & Worster 1996). The linear
oscillatory mode is a consequence of intricate interactions between convection
and solidification in a mushy layer and has no analogue in simple B´enard con-
vection. These oscillations clearly have nothing to do with internal waves in
the melt but are intrinsic to the internal dynamics of the mushy layer.
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4. NONLINEAR CONVECTION

As we have seen, there are interesting novel phenomena associated with linear
convection in mushy layers. Some of these are indicative of the mechanisms
underlying chimney formation, but the focusing of the convective flow into
narrow vertical regions of upflow is fundamentally a nonlinear phenomenon. In
particular, the linear analyses cannot capture the effect of changing solid fraction
on the permeablity to flow, which provides a positive nonlinear feedback for
convection.

Amberg & Homsy (1993) were the first to analyze such nonlinear mecha-
nisms with a small, finite-amplitude analysis of convection in a mushy layer.
They employed the near-eutectic approximation and further restricted their
analysis by imagining a (co-moving) rigid barrier to separate the mush from
the liquid region. The essential physics underlying their analysis is illustrated
by the equations

Ẇ = [R(φ)− 1]W (25)

and

φ̇ = −C−1W. (26)

Of course, the equations actually solved were much more complex and the
solution involved a double expansion inδ � 1 andε � 1 in the distinguished
limit δ ∼ ε, whereδ is the dimensionless depth of the mushy layer andε is the
amplitude of the perturbations. They analyzed, separately, weakly nonlinear
steady states in the form of 2-D rolls and of hexagons.

An important parameter determining the nonlinear evolution of convection
in a mushy layer is the sensitivity of its permeability to changes in the solid
fraction,P = − 1

5
d5
dφ , which is constant in the near-eutectic limit. It is related

to R′(φ) in the illustrative Equation 25. In the near-eutectic approximation, the
permeability is given by

5∗ ∼ 50(1− Pφ + · · ·). (27)

Amberg & Homsy (1993) found that 2-D rolls bifurcate supercritically when
P is small but bifurcate subcritically whenP > 0.226δC. They found fur-
ther that hexagons bifurcate linearly, the backwards branch corresponding to
hexagons with upflow at their centers.

The only experimental study relating to this result is that by Tait et al (1992),
who cooled and solidified solutions of ammonium chloride from below very
slowly so that they could observe the onset of convection. The most striking
observation was of vertical, sheet-like chimneys forming the sides of a roughly
polygonal array. A statistical analysis of the numbers of nodes in the array and

A
nn

u.
 R

ev
. F

lu
id

. M
ec

h.
 1

99
7.

29
:9

1-
12

2.
 D

ow
nl

oa
de

d 
fr

om
 a

rj
ou

rn
al

s.
an

nu
al

re
vi

ew
s.

or
g

by
 C

A
M

B
R

ID
G

E
 U

N
IV

.M
E

D
.L

IB
. o

n 
04

/2
6/

06
. F

or
 p

er
so

na
l u

se
 o

nl
y.



          

November 28, 1996 14:26 Annual Reviews WORSTEXT AR23-04

110 WORSTER

the lengths of sides of the polygons gave numbers that, of all the possible tesse-
lating plan forms, were closest to hexagons. The flow was downwards at the cen-
ters of the hexagons and upwards along their edges, where the crystals were dis-
solved to form linear chimneys. The nodes where edges met eventually became
the familiar cylindrical chimneys, while further crystallization filled the edges.

The observation of hexagons with downflow at their centers is at variance with
the results of Amberg & Homsy (1993), since one would expect the conditions
relating to the backward branch of the bifurcation diagram to be observed first.
Their analysis was extended recently by Anderson & Worster (1995) in two
ways. First, they relaxed the conditionδ ∼ ε and instead considered the
double limit lim

δ→0
lim
ε→0

, noting that this is quite distinct from lim
ε→0

lim
δ→0

, which is

singular. This allowed them to include many more nonlinear effects in addition
to the variation of permeability with solid fraction. Second, they formally set
P = O(ε), which makes the linear branch corresponding to hexagons almost
vertical, allowing higher-order terms to be included in the analysis and allowing
the interactions between rolls and hexagons to be studied. It was found that both
stable up-flowing and stable down-flowing hexagons are possible depending on
the dimensionless parameters of the system (Figure 7). While the analysis still
cannot be compared directly to the experimental results, it illustrates how many
different factors contribute to the planform of convection in mushy layers.
More importantly, this study revealed the parametric dependence of the global
critical Rayleigh numberRg, below which the system is completely stable to
disturbances of arbitrary amplitude.

A major shortcoming of the nonlinear analyses described above is the use of
the boundary condition of no vertical flow through the mush–liquid interface.
This was employed expediently to allow analytical progress to be made, but a
more appropriate condition would be one of constant pressure. It is likely that
a numerical study will be needed to study this case.

As one moves along the nonlinear branch of the bifurcation diagram (Fig-
ure 7) to larger amplitudes, the flow evolves from the sinusoidal profile of the
linear normal mode to a profile in which the upflow is focused into narrow ver-
tical regions separated by broader regions of downflow (Figure 8). Eventually
one reaches a state in which the solid fraction is negative immediately below
the top of the region of upflow: a chimney is born at the mush–liquid interface
and “grows downwards” into the mushy layer. Similar behavior has been seen
in full-scale numerical simulations by Fellicelli et al (1991), though the calcu-
lations were not well resolved. The fact that chimneys grow from the top down
appears to give support to the idea, mooted by Sample & Hellawell (1984), that
chimneys form in response to the convective flow in the liquid region above the
mushy layer. However, as has been noted by many authors, the apparent growth
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Figure 7 The bifurcation diagram for weakly nonlinear convection in a mushy layer, showing
the interaction between 2-D rolls and hexagons. The figure is drawn for the case that up-flowing
hexagons are stable. For other values of the governing parameters the figure becomes reflected
in the ordinate axis so that down-flowing hexagons are stable. Below the minimum Rayleigh
numberRg the mushy layer is completely stable to disturbances of arbitrary amplitude. Solid
curves indicate stable steady states, while dashed curves indicate unstable steady states.

from the top down is simply a consequence of the fact that the solid fraction is
smallest and the vertical velocity is largest at the top of the mushy layer. The
mechanism producing chimneys is internal to the mushy layer itself, though
convective motions above the mushy layer may help to trigger the subcritical
convection within it.

5. FULLY DEVELOPED CHIMNEYS

Once a region of the mathematical mushy layer attains a negative solid
fraction it must be replaced by liquid, whose motion is governed by the full
Navier-Stokes equations. This significantly increases the difficulty of calculat-
ing large-amplitude convecting states.

An alternative approach is to try to describe, mathematically, convective
states in which the chimneys are fully developed. Historically speaking, this is
perhaps the beginning of the story of attempts to calculate flows in mushy layers.
The first analytical treatment of flow in a mushy layer was presented by Roberts
& Loper (1983). They considered flow in an annular mushy region, with the
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Figure 8 The solid fraction and vertical velocity as functions of horizontal distance in a nonlinear
convecting state with hexagonal planform. Figures (a) and (b) correspond to the section AB and
figures (c) and (d) correspond to the section CD in the hexagonal planform shown above. There
is upflow in the center of each hexagon, which leads to dissolution of the solid fraction there. The
parameter values used wereδ = 0.3, C = S= 2 andε = 0.005. The figure was produced by DM
Anderson, based on the study by Anderson & Worster (1995).

core of the annulus being a chimney. They developed a consistent framework
in which fluid flowed from the liquid region above the mushy layer down and
inwards toward the chimney and then flowed up through the chimney driven by
buoyancy forces within the chimney and the pressure gradient along the wall of
the chimney. This framework was adopted by Worster (1991), who analyzed the
asymptotic limit of large Rayleigh number. His study suggested that the solid
fraction at first increases toward the chimney, owing to the additional cooling
provided by the flow of cold liquid up the chimney, before decreasing to zero
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Figure 9 The streamlines once a chimney has formed in a two-dimensional ideal mushy layer are
shown with thin lines, with arrows indicating the direction of flow. Superimposed on the left are
isotherms and on the right are contours of solid fraction. The chimney (central portion) is assumed to
have straight-sided walls. The scale of the chimney shown in the figure is arbitrary. The ratio of the
actual width of the chimney to the width of the convection cell depends on the dimensionless parame-
terH. The flow in the chimney was calculated analytically using an approximate Polhausen method,
while the flow in the mushy layer was calculated numerically. Although the top of the mushy layer
was kept flat and horizontal in the calculation, the shape of the solid-fraction contours is indicative
of the shape of the mush-liquid interface. The calculations were made recently by TP Schulze.

very close to the chimney wall, owing to internal dissolution. This picture has
recently been confirmed by direct numerical calculation (Figure 9).

Although the asymptotic analysis enabled the width of a single chimney and
the strength of the flow through it to be determined, the overall heat and salt
fluxes exchanged between the mushy layer and the liquid region depend also
on the areal number density of chimneysN . A theoretical prediction ofN
has yet to be made, which is perhaps now the major obstacle preventing simple
completely predictive models of fully convecting systems including mushy
layers to be developed.

Some important general results have, nevertheless, been obtained by pre-
scribing a fixed value forN . Among these is the fact that, once chimneys
are fully developed, the temperature and concentration of the liquid region
evolve towards less saturated conditions (Worster 1990). This is in contrast
to the effect of convection from the mush–liquid interface (the boundary-layer
mode), which tends to cause the liquid region to become supercooled (Kerr et al
1990). It has also been possible to calculate, as a function ofN , the effect on
the horizontally averaged solid fraction of convection through chimneys in the
mushy layer. Such convection increases the solid fraction significantly. Worster
(1991), for example, showed that the solid fraction could become equal to unity
at the base of the mushy layer and hence that the composition of the solid be-
low the eutectic front could become equal to that of the pure salt. However,
his calculation neglected the decrease of the permeability as the solid fraction
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increases, which inhibits the removal of residual liquid from the interstices.
This effect is currently being investigated in the context of the desalination of
marine ice, described in Section 7, below.

6. WHY CHIMNEYS MAY NOT FORM

In the last few sections, I have summarized the theoretical studies of ideal mushy
layers in a way that suggests that chimneys are an inevitable consequence of
convection in mushy layers if only the Rayleigh number is large enough. All
experimental studies of mushy layers have been transient ones in which cool-
ing has been applied at a fixed boundary and the mushy layer has grown in
depth away from the boundary. From what has been described so far, since the
Rayleigh number increases with the depth of the mushy layer, one would rea-
sonably expect the mushy layer to grow initially without convecting, then begin
convecting once the depth achieves a certain value, and to produce chimneys
once the depth achieves a certain greater value. This is precisely the sequence
of events that is observed when aqueous solutions of ammonium chloride are
cooled and solidified from below. However, in many similar experiments using
various other salts no chimneys were ever observed (Huppert 1990).

One of the difficulties in determining the reason or reasons for the lack of
chimneys in certain experiments was that there were so many gross differ-
ences between the various experiments, both chemically and physically. What
was needed was a systematic and quantitative way of making a mushy layer
progressively more nonideal.

Such a method was discovered by Huppert & Hallworth (1993). To aqueous
solutions of ammonium chloride they added small quantities (up to 0.5 wt.%)
of copper sulfate. It had been known for a long time that, as the concentration
of copper sulfate added to aqueous ammonium chloride solutions increases, the
crystals that form undergo various morphological phase transitions associated
with exposing new crystallographic planes to the melt, and that the crystals
become more faceted (Mellor 1981). These are microscopic effects. What
Huppert & Hallworth (1993) discovered was the macroscopic phenomenon
that the time until the first appearance of chimneys increased dramatically as
the concentration of copper sulfate increased until, at a concentration of a little
over 0.3 wt.% CuSO4, no chimneys were observed at all.

Before describing possible reasons for this phenomenon in terms of nonideal
effects, let us examine the possibilities for the nonappearance of chimneys based
on the behavior of ideal mushy layers.

The simplest explanation is that, since the critical Rayleigh number depends
on all the other dimensionless parameters of the system, such asSandC, it was
simply never attained in the experiments in which chimneys were not observed.
Appealing as this is, by itself it is perhaps too simple to explain the results of

A
nn

u.
 R

ev
. F

lu
id

. M
ec

h.
 1

99
7.

29
:9

1-
12

2.
 D

ow
nl

oa
de

d 
fr

om
 a

rj
ou

rn
al

s.
an

nu
al

re
vi

ew
s.

or
g

by
 C

A
M

B
R

ID
G

E
 U

N
IV

.M
E

D
.L

IB
. o

n 
04

/2
6/

06
. F

or
 p

er
so

na
l u

se
 o

nl
y.



        

November 28, 1996 14:26 Annual Reviews WORSTEXT AR23-04

CONVECTION IN MUSHY LAYERS 115

adding copper sulfate to solutions of ammonium chloride. The only way to
change the critical Rayleigh number substantially is to change the steady-state
solid fraction of the mushy layer. The small amounts of copper sulfate added
have only a small effect on the equilibrium phase diagram and hence have little
effect on the solid fraction.

Another possibility is a little more subtle. Along the nonlinear branch of
the bifurcation diagram (Figure 7), chimneys can appear either on the lower
(unstable) branch or on the upper (stable) branch depending on the values of
the dimensionless parameters (Anderson & Worster 1995). In the former case,
any triggering of convection leads inexorably to the appearance of chimneys.
In the latter case, stable, finite-amplitude-convection states are possible with no
chimneys. Such convection, by bringing more solute into the mushy layer, in-
creases the bulk concentration of the layer and hence increases its solid fraction,
retarding further amplification of the convection and delaying the formation of
chimneys. This may be a significant or even the dominant reason why chimneys
are not seen in many experiments, but seems unlikely to be sufficient to explain
the dramatic consequences of small additions of copper sulfate to ammonium
chloride solutions.

It is tempting to conclude from Huppert & Hallworth’s experiments that, since
copper sulfate alters the structure of the crystals, convection in mushy layers is
very sensitive to the morphology of the solid phase. However, while there is
some influence of morphology on the permeability, the latter is principally de-
termined by the primary dendrite spacing, which does not change significantly.

However, the changed morphology, particularly the increasingly faceted ap-
pearance of the crystals, is indicative of greater levels of kinetic undercooling at
the crystal–melt interface. This has been measured directly by Raz et al (1991).
Kinetic undercooling is essentially the activation energy that is required for
molecules to leave the liquid phase and become part of the solid. It manifests
itself in the fact that the temperature at the interface of a growing crystal is
less than the equilibrium freezing temperature (liquidus) by an amount that is a
function of the growth rate of the crystal. At the mush–liquid interface there is
an interfacial undercooling resulting from three effects: the attachment kinet-
ics just mentioned; undercooling associated with the curvature of the dendrite
tips; and constitutional undercooling owing to compositional depletion in the
vicinity of the growing dendrites.

Kerr et al (1990) had shown how such interfacial undercooling just at the
edge of a mushy layer, coupled with convection in the liquid region, can have
profound consequences for the evolution of the liquid and the growth of the
mushy layer. In 1994, Worster & Kerr applied this same idea to the experiments
of Huppert & Hallworth. They measured the interfacial undercooling at the
mush–liquid interface and determined an empirical relationship of the form

ḣ = G(TL − Ti )
2, (28)
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whereḣ is the rate of advance of the interface,TL is the liquidus temperature
of the melt,Ti is the temperature of the interface, andG is a constant. This
functional form is motivated by physical principles of local crystallization ki-
netics, which can depend on crystal orientation and the growth mechanism at
the molecular level (Burton et al 1951). Worster & Kerr (1994) found that the
coefficientG is a very strong function of the concentration of copper sulfate.
They incorporated the measured values of the undercooling into a theoretical
analysis of a growing mushy layer. They showed how the undercooling causes a
strengthening of the boundary-layer mode of convection, which retards growth
of the mushy layer, increases its solid fraction, and decreases the compositional
contrast across it. These three effects combine to reduce the Rayleigh number
of the mushy layer. It was shown in particular that, although it always increases
initially, the Rayleigh number can ultimately decrease in time (Figure 10). It
thus reaches a maximum value which can be less that that required for chimneys
to form.

Figure 10 The calculated Rayleigh number in a stagnant mushy layer growing from a cooled lower
boundary as a function of time. The liquid above the mushy layer is assumed to be convecting
vigorously, driven by compositional buoyancy in the neighborhood of the mush–liquid interface.
The convection coupled with dynamic interfacial undercooling causes the composition of the melt
to evolve, retards growth of the mushy layer, and increases its solid fraction. These effects combine
to reduce the Rayleigh number and can cause it ultimately to decrease, as shown. The numbers
labeling the curves correspond to the concentration (wt.%) of copper sulfate with which an aqueous
solution of ammonium chloride was contaminated. Increasing the contamination makes the mushy
layer progressively less ideal. At a sufficiently high contamination the maximum Rayleigh number
attained is less than that required for chimneys to form in the mushy layer.
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An alternative explanation, suggested by S. Lipson in an appendix to Huppert
& Hallworth (1993), is that the interstitial liquid may convect out of the mushy
layer before becoming unsaturated sufficiently to dissolve any crystals. This
requires disequilibrium in the interior of the mushy layer and hence a greater
departure from the ideal mushy layer than does the explanation given by Worster
& Kerr (1994). This suggestion has yet to be given quantitative substance, which
awaits the development of a mathematical model of a nonideal mushy layer.

7. SOME APPLICATIONS

The study of mushy layers was introduced to the applied-mathematics commu-
nity from metallurgy by some of those interested in the convective dynamics
of the Earth’s core and the geodynamo (Fearn et al 1981). The Earth’s core
consists of a solid inner core of iron growing from an outer core of molten iron
contaminated by small amounts of lighter elements such as sulfur and oxygen.
The conditions (pressure, temperature, concentration) are such that the inner
core is potentially mushy throughout (Fearn et al 1981). As more iron solidifies
onto the inner core, the molten outer core becomes enriched in the lighter ele-
ments and may therefore undergo compositional convection. As we have seen,
such convection can lead to the formation of chimneys and focusing of the flow
into narrow buoyant plumes. The structure of the convective elements can have
a profound influence on their potential to generate or sustain a magnetic field
(Moffat & Loper 1994). Recently the idea that convection in the mushy inner
core leads to chimneys has been challenged by Bergman & Fearn (1994). They
argue that the resistance to flow through the inner core is dominated by the
magnetic field so that the nonlinear feedback associated with decreasing solid
fraction increasing the permeability may be ineffectual in focusing the flow to
form chimneys.

Mushy layers are also prevalent in solidifying magmas and one might antici-
pate that chimneys should be observed in igneous rocks. A significant differ-
ence between a solidifying magma and a directionally cast alloy is that many
crystals in a magma grow in suspension and then settle to form a “cumulate
pile”. Though morphologically different from a dendritic mushy layer, contin-
uing solidification of interstitial melt in a cumulate pile may generate similar
convective flows within it (Kerr & Tait 1986, Tait & Kerr 1987). Such flows
can become focused by the same mechanisms associated with dissolution that
have been described here and either form chimneys or simply narrow vertical
regions of slightly altered composition and microstructure. Such postcumulate
processes in magma chambers have not yet received much attention, though
some connections between the chimneys observed in mushy layers in labora-
tory experiments and geological field data have been made by Tait & Jaupart
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(1992), who suggested, for example, that dunite pipes in the Bushveld intrusion
(in South Africa) may be extinct chimneys.

Another form of cumulate pile occurs on the underside of Antarctic ice
shelves. Melt water formed near the grounding line of an ice shelf flows up
along the underside of the shelf in a buoyant plume (Jenkins & Bombosch
1995). As the plume rises, it experiences a fall in the surrounding hydrostatic
pressure and can begin to solidify. Ice crystals are believed to accrete from
the plume to the underside of the ice shelf to form a layer of “marine ice”.
The layer of ice crystals will initially have salt water in its interstices, and the
bulk salinity of the layer will therefore be about 1 ppt. Yet the bulk salinity
of marine ice recovered from drilling surveys has a salinity of only 0.05 ppt.
One mechanism that could account for this desalination is the drainage of brine
through chimneys that form during freezing of the interstices.

Such drainage is certainly evident during the formation of sea ice in polar seas
(Eide & Martin 1975). Sea ice forms initially by the aggregation of frazil ice
crystals in suspension (Martin 1981) but it quickly develops into a mushy layer
with a rigid matrix of solid ice. In this and in the case of marine ice, cooling is
from above, though in the case of marine ice the cooling is very weak. Strictly,
therefore, these are dynamically different situations from that discussed above,
in which cooling was from below. However, the internal dynamics of the
mushy layer are similar but with the effective expansion coefficient redefined
by β = β∗ + α∗0, since thermal and compositional buoyancy act in concert
when cooling is from above. Recent experiments by JS Wettlaufer, HE Huppert
and myself have shown that when a mushy layer of sea ice first begins to
grow in open water, the rejected brine initially remains within its interstices.
Only once the depth of the sea ice exceeds a critical value (depending on
the surface temperature) does brine begin to drain into the underlying ocean
(Figure 11). This is consistent with the ideas presented here that mushy layers
remain stagnant until the Rayleigh numberRm exceeds a critical value.

Of course, one of the main applications of all this work remains the analysis
of industrial casting processes. The longitudinal strength of turbine blades,
for example, is significantly enhanced by solidifying them directionally. This
is done by withdrawing the mold slowly and vertically downwards from the
furnace so that crystals grow upwards from the base of the mold. The state
of the art is to grow single-crystal turbine blades. The solid phase during
solidification is still dendritic (similar in appearance to Figure 1), but all the
dendrites originate from the same single crystal seed. Such regular alignment
increases the permeability of the mushy layer and hence increases the potential
for convection and the formation of chimneys. Solidified chimneys, called
“freckles”, are regions of altered composition and microstructure that seriously
impair the strength of the cast product. Current industrial practice is simply to
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Figure 11 The composition of the liquid region below “sea ice” grown in a finite container filled
with an aqueous solution of sodium chloride graphed as a function of the depth of the sea-ice layer.
Initially, brine rejected by the growing ice crystals remains within the interstices of the sea ice.
Once the depth of the layer exceeds a critical valuehc, which depends on the applied cooling rate,
brine drains from the sea ice into the liquid below.

discard any turbine blade that shows evidence of freckling, which is enormously
costly in terms of wasted production time and energy. There is yet much to be
gained from a proper theoretical understanding of chimney formation backed
up by simple laboratory experiments.

8. SUMMARY

Most of the theoretical work on mushy layers to date has been carried out by
mathematical modelers concerned with the development of appropriate gov-
erning equations. A lot of the effort has been expended justifying the various
assumptions and approximations made in their development. I have tried to
present here a distillation of the mathematical models in a definition of an
“ideal” mushy layer. The hope is that this will form a convenient starting point
for further theoretical investigations so that convection in mushy layers becomes
as well understood as B´enard convection of a Boussinesq fluid.

Some of the theoretical investigations performed so far have been described
in this article. We have seen that the ideal mushy layer is rich in dynami-
cal behavior, some anticipated and some wholly unexpected. The predicted
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behavior of ideal mushy layers has been shown to be very similar to the be-
havior of a number of actual solidifying systems, so the study of ideal mushy
layers is of practical benefit. Yet there is some observed behavior that is yet to
be explained fully. Such explanations might come from further investigations
of ideal mushy layers; others may come from extended models that incorporate
nonideal effects.
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