PNAS: Climate models can correctly simulate the continuum of global-average temperature variability

Feng Zhu, Julien Emile-Geay, Nicholas P. McKay, Gregory J. Hakim, Deborah Khider, Toby R. Ault, Eric J. Steig, Sylvia Dee, and James W. Kirchner
Proc. Natl. Acad. Sci. USA 116 (2019) 8728-8733.

DOI: 10.1073/pnas.1809959116


Climate models are foundational to formulations of climate policy and must successfully reproduce key features of the climate system. The temporal spectrum of observed global surface temperature is one such critical benchmark. This spectrum is known to obey scaling laws connecting astronomical forcings, from orbital to annual scales. We provide evidence that the current hierarchy of climate models is capable of reproducing the increase in variance in global-mean temperature at low frequencies. We suggest that successful climate predictions at decadal-to-centennial horizons hinge critically on the accuracy of initial and boundary conditions, particularly for the deep ocean state.


Climate records exhibit scaling behavior with large exponents, resulting in larger fluctuations at longer timescales. It is unclear whether climate models are capable of simulating these fluctuations, which draws into question their ability to simulate such variability in the coming decades and centuries. Using the latest simulations and data syntheses, we find agreement for spectra derived from observations and models on timescales ranging from interannual to multimillennial. Our results confirm the existence of a scaling break between orbital and annual peaks, occurring around millennial periodicities. That both simple and comprehensive ocean–atmosphere models can reproduce these features suggests that long-range persistence is a consequence of the oceanic integration of both gradual and abrupt climate forcings. This result implies that Holocene low-frequency variability is partly a consequence of the climate system’s integrated memory of orbital forcing. We conclude that climate models appear to contain the essential physics to correctly simulate the spectral continuum of global-mean temperature; however, regional discrepancies remain unresolved. A critical element of successfully simulating suborbital climate variability involves, we hypothesize, initial conditions of the deep ocean state that are consistent with observations of the recent past.

JAS: Quantifying the Annular Mode Dynamics in an Idealized Atmosphere

Pedram Hassanzadeh and Zhiming Kuang

J. Atmos. Sci. 76 (2019) 1107-1124.

DOI: 10.1175/JAS-D-18-0268.1


The linear response function (LRF) of an idealized GCM, the dry dynamical core with Held–Suarez physics, is used to accurately compute how eddy momentum and heat fluxes change in response to the zonal wind and temperature anomalies of the annular mode at the quasi-steady limit. Using these results and knowing the parameterizations of surface friction and thermal radiation in Held–Suarez physics, the contribution of each physical process (meridional and vertical eddy fluxes, surface friction, thermal radiation, and meridional advection) to the annular mode dynamics is quantified. Examining the quasigeostrophic potential vorticity balance, it is shown that the eddy feedback is positive and increases the persistence of the annular mode by a factor of more than 2. Furthermore, how eddy fluxes change in response to only the barotropic component of the annular mode, that is, vertically averaged zonal wind (and no temperature) anomaly, is also calculated similarly. The response of eddy fluxes to the barotropic-only component of the annular mode is found to be drastically different from the response to the full (i.e., barotropic + baroclinic) annular mode anomaly. In the former, the eddy generation is significantly suppressed, leading to a negative eddy feedback that decreases the persistence of the annular mode by nearly a factor of 3. These results suggest that the baroclinic component of the annular mode anomaly, that is, the increased low-level baroclinicity, is essential for the persistence of the annular mode, consistent with the baroclinic mechanism but not the barotropic mechanism proposed in the previous studies.