RUGS Field Trip to Galveston Island and the Upper Texas Gulf Coast

RUGS Field Trip to Galveston Island and the Upper Texas Gulf Coast

By Sarah Preston, Christina Stoner (& Juli Morgan)

Field trip participants on Galveston Island. Image courtesy of Julia Morgan.

On April 25, after almost a year with no field trips, RUGS had the opportunity to take a day-long local field trip to the Upper Texas Gulf Coast. The trip was was planned by the EEPS seniors, with EEPS Professors Julia Morgan and Melodie French serving as drivers and faculty sponsors, and guided by Rice Professor Emeritus John Anderson, an expert on coastal processes with particular knowledge of the Upper Texas Gulf Coast. Seven undergraduates participated. We traveled from Houston to Freeport to Galveston, stopping along the way to learn about coastal geology and geomorphology, as well as the history of sea level changes through time and the resulting depositional history along the coast. Over the course of the day, we gained a new appreciation for the scale on which geologic processes occur, the interactions between humans and the ocean, and the interconnected nature of the climate and ocean systems.

EEPS Emeritus professor John Anderson and Rugs students talk about West Bay from Jamaica Beach. Image by Julia Morgan

 

We met up in the geology/biology parking lot at 7:45 AM and left Rice soon after, driving south for about an hour before stopping at two different Buc’ee’s locations for snacks and gas, and finally meeting with Dr. Anderson near Freeport, a port and petrochemical town situated only about 5 feet above sea level. Our first stop was on Levee Road, which provides excellent views of Oyster Creek, which meanders through an abandoned channel of the Brazos River occupied in the Late Holocene, on its way to the coast. Here Dr. Anderson provided us with an overview of the geologic history of southeast Texas, pointing out the man-made Brazos River cut-off which redirected the modern-day river channel to protect Port Freeport.

Sarah Preston finds shells on the beach at Follet’s Island. Image by Christina Stoner

We then began our drive northeast along the coast. We stopped briefly at the Oyster Creek Delta, taking a closer look at the remains of the Holocene Brazos River channel, where we discussed the submerged depositional record of the migrating river. We then drove to Follet’s Island, a low-lying barrier island, stopping on the beach.

Although the sand at Follet’s Island was very compacted from years of people driving on the beach (a surprise to the non-Texans in the group), we were able to find shells and a small sandstone outcrop that preserved some depositional features.

 

House in the tidal zone at Follet’s Island. Image by Julia Morgan

We then stopped at a small neighborhood at eastern end of Follett’s Island to examine the effects of beach erosion, which has left several houses well below the tide line, directly exposed to coastal waves.

 

Sandstone outcrop on Follet’s Island. Image by Christina Stoner

 

Laughing gull flying over boardwalk extending over Tidal Delta. Image by Sarah Preston

We stopped for lunch at a county park, with an overview of the San Luis Pass Tidal Delta, a popular fishing site for both people and wildlife, before crossing the bridge over the San Luis Pass and proceeding northeast onto Galveston Island. Our last group stop was along the eastern edge of Jamaica Beach, where most houses are on stilts to accommodate storm surges. With an expansive view of West Bay and Galveston Island State Park, we discussed efforts to improve the health of local ecosystems. Our field trip concluded at Dr. Anderson’s Galveston Island home, with welcome shade, snacks, and restroom opportunities.  Dr. Anderson related their experiences during various tropical storms and hurricanes that passed through the area, noting that their Galveston house had stood up to Hurricane Harvey significantly better than their house in Houston.

 

After bidding him farewell, we drove along the Galveston Seawall to the Galveston – Port Bolivar Ferry, which we rode both ways to take in the enormous ships plying the waters on their way to the Houston Ship Channel.   Upon our return to Galveston, we made the hours’ drive back to Rice.

 

RUG’s students on the upper deck of the Galveston-Bolivar Ferry. Image by Julia Morgan

Throughout the trip, Dr. Anderson shared fun facts, anecdotes, and local history, showing us places where houses used to be before the ocean overtook them, cracking jokes about former study areas, and telling us about the interactions between scientists and the Texas state government.

 

The trip was a welcome–and very much appreciated–respite after almost a full semester of classes, with educational stops, beautiful sights, and even some interesting animal sightings. (My perfect record of seeing dolphins on RUGS field trips held!) At the end of the day, we returned to Rice with a broader appreciation for the environmental toll of unchecked human activity, the connections between people and the oceans, and the importance of coastal geology.

EEPS 2021 REU Field trip: Minturn CO- Day 2: Saint Mary’s Glacier

EEPS 2021 REU Field trip: Minturn CO- Day 1: Eagle River & Cross Creek

ESCI 321 &322 Field Trip: Tales of Mud Volcanoes, Evaporite Deposits and Lava Tubes.

 

This blog describes the 5-day field trip for the Fall 2017 ESCI 321 and 322 classes to Southern California from October 6 and 10, 2017. The trip was led by professors Cin-Ty Lee and Rajdeep Dasgupta, and reported by undergraduate students Kendra Baldwin, Kyle Bartsch, Simon Chan, Aitash Deepak, Jennifer Kroeger, Jason Mendez, Jared Nirenberg, Sarah Silberman, and Jackson Stiles. The group was assisted by graduate students James Eguchi, Damanveer Grewal, Hehe Jiang, Sriparna Saha, Chenliang Wu, and Dr. Ming Tang.

The Southern California region has a complex geologic past with subduction, rifting and strike-slip motion, occurring along the major plates underlying the North American Continent. Most of California’s Paleozoic geologic history is evident in regions of the Mojave Desert and Death Valley. The Paleozoic era saw deposition of limestones, sandstones, and shales that were later eroded, displaced or uplifted during the tectonic activity that followed in the Mesozoic and Cenozoic. The rocks are primarily limestone with an abundance of fossils that indicate the evolution of early marine life forms. The region saw multiple periods of sea level fluctuation that led to the deposition of carbonate reefs along what is today’s Death Valley.

The Mesozoic was a period of increased geologic activity. During the middle to late Jurassic period, the Farallon Plate began subducting beneath the North American Plate, leading to the development of an extensive volcanic-arc system along the western coast of North America, and uplift of the Rocky Mountains in the late Cretaceous. Subduction also led to formation of the Southern California Batholith and other plutonic and extrusive volcanic regions in the Mojave Desert Region. An example of Mesozoic plutonic rocks can be seen in the Joshua Tree National Park, where the extensively exposed rocks exhibit uniformity in texture and grain size. The peak of volcanic activity occurred during the late Cretaceous in the southern Sierra Nevada region. The region was also covered by sedimentary deposits, with uplifting and metamorphism combined to create intertwined sedimentary and volcanic deposits.

During the early Paleogene period, while Farallon Plate subduction continued, volcanic activity in the peninsular region ceased. Uplift and erosion rates were continuous, which led to the deposition of vast amounts of sediments along the western continental shelf. Moving into the early Neogene period, the Farallon Plate disappeared into the subduction zone forming the San Andreas Fault; at an angle oblique to the western margin of the continent. As mountains began to rise along the coastline, marine sedimentary deposits became exposed. Eastward, crustal thinning and tectonic uplift along the Mojave desert region led to the development of the basin and range landscape. Additionally, Baja California started to move westward, away from Mexico.

In the quaternary period, the major driver of tectonic activity is the strike-slip San Andreas Fault, resulting in transverse ranges and extensional regions. Modern Rivers flowed through the basins while there was still volcanic activity in the Mojave region.

Day 1

The first stop of our trip was at Tourmaline Beach in La Jolla, California. We looked at the Point Loma Formation, which consists of marine deposits of sandstone and siltstone, formed originally in the Sierra Nevada- Peninsular Ranges batholith during the late Cretaceous. These were eroded from the roof of the magmatic arc that rose quickly due to compression and magmatism. Rapid erosion and transport of the deposits can be implied from the poorly rounded igneous sand grains. The marine deposits of forearc sandstones are tilted; graded-bedding and small areas of soft-sediment deformation are visible here.

Day 2

Marine depositional layers at Tourmaline Beach Photo Credit: Jackson Stiles

San Diego River Upper Estuary

 After a breakfast of bagels we reached an overlook above the San Diego River. The river is slow moving, and while the water level was fairly low when we were there, we could tell that the water level is often much higher. The water here is estuarine and thus brackish, but does not have strong enough sediment discharge rate to create a full delta. The sediment load is mostly comprised of fine sands and silt.

Hospitality Point-San Diego River Mouth and Lower Estuary

 Following the San Diego river overlook, we made our way to where the river meets the sea. While the San Diego River has migrated along the coast over time, it is now contained by a jetty, cementing its path to the ocean at one spot. The engineered jetty also prevents beach sediments carried by currents along the shore from piling up in mission bay in favor of generating a large sandbar at the river channel. This piled up sediment is rarely breached by floods and suffers minimal erosion.

Sunset Cliffs Next, our group stopped at the cliffs overlooking the Pacific Ocean at Point Loma. These cliffs are an example of late Cretaceous sandstones (75ma) that have a high sand to mud ratio, making them fairly resistant to erosion. These sandstones belong to a forearc setting, exposed due to tectonic uplift, that enabled preservation and exposure of deep water sediments. Finely laminated layers at the bottom of the exposed strata are most likely the result of deposition in a calm depositional environment with high clay content. Overlying the thin laminated layers was a thicker layer of sandstone (indicating a much higher energy environment) and the white markings are erosional surfaces along the cliffs. Within this layer  large rip-up mud clasts were deposited. Further up in the outcrop we could see an old soil horizon and erosional unconformity that represents a 70 million year gap between the Cretaceous sediments and the more recently deposited sediments. We also identified sections of soft sediment deformation and local slumping from differential compaction of the overlying layers on the soft sediments. The entire outcrop was interlaced with faults.

Soft sediment deformation overlaying clay layers.  Photo Credit: Jackson Stiles

Coronado Overlook

 Our next stop was at the top of the Cabrillo National monument overlooking the San Diego Bay. The bay itself is a graben bound by faults on the west, and the Cretaceous mountains in the East. Coronado Island is a sand spit created by long-shore sediment pulses from the ocean. The sediment deposited on the coastal plains from the eastern mountains is manifest into turbidites and deep water deposits.

Peninsular Ranges Batholith-Cretaceous Plutonic Rocks

Outside of San Diego, we parked along the roadside to look at a large outcropping in the Peninsular Ranges batholith region, which is around 90 million years old. At the road cut the majority of the rocks were tonalite (a type of felsic granodiorite mostly made of plagioclase). This tonalitic outcrop was crosscut by large dark colored (mafic) and light colored (silica-rich) dikes. The dikes intruded after the tonalite batholith had formed and the brittle nature of the tonalite led to the development of extensive fractures.

Cuyamaca Lake

Cuyamaca Lake is underlain by Cretaceous gabbro composed mostly of plagioclase and orthopyroxene that are associated with the Cretaceous volcanic arc. Olivine was also present, but it was difficult to identify. The rocks around Lake Cuyamaca are also about 90 million years old, but is unique given it is one of the only sites in all of Southern California with layered gabbro deposits.

Jurassic Migmatites

 To reach this location we took a quick hike through the bush.  Exposed on the plain beyond were Paleozoic aged sedimentary rocks that had been melted and deformed during the Mesozoic era by through ductile underthrust in a subduction zone. During this process, many felsic (white colored) dikes formed through the rock, cross-cutting each other in several places. Within these dikes, we observed clusters of black coarse-grained tourmaline crystals; these are described as tourmaline pegmatites. Throughout the surface of the exposure, there were small, unnatural depressions which interestingly served as evidence that the outcrop was used by Native Americans to grind nuts.

View of Alluvial Fan
After leaving Julian (without having any of their famous apple pie), we stopped along the side of the road in a vast plain surrounded by mountains. The region showed a high quantity of brittle shear within fault gouges, and ductile shear visible in mylonite metamorphism resulting from high shear strain. Protomylonites from this intense ductile shear were quite prominent. The tonalite in this area was highly foliated, and there were few dikes present. The alluvial fans observed here had a high inclined gradient and contained many boulders and cobbles. The vast plain was actually a large coalescence of alluvial fans known as a bajada.

Two cross-cutting dikes in the Jurassic Migmatites.  Photo Credit: Chenliang Wu

 At the next stop, we were greeted by a small shack with the words “dead body inside” crudely painted on it. The stop was located at the base of the mountains near Anzo Borrego, with a view of a range across a playa. The mountains in the distance had reddish black sediment deposits along their hillsides. These were representative of fluvial sediments about 3 to 5 million years. The reddish black coating was likely a layer of iron-manganese oxide around 10 microns thick, and it indicates they were older than the incision. The rocks along the hillside we had stopped at were proto-mylonites. The shear stress during the mylonitization process caused various minerals in the rock to recrystallize that resulted in presence of clusters of garnet crystals forming throughout the matrix. The mylonitization was an inter-arc shear zone and most likely occurred during the late Cretaceous arc magmatism, and suggests a connection between the arc magmatism and a great amount of deformation of the upper plate.

Day 3

Salton Sea Area

 Our first stop on the third day was at the Salton Sea Pliocene deposits between the Salton Sea and the Gulf of California Basin. The deposits were fluvial, lake, and deltaic associated with the initiation of the rifting of the Gulf. We saw different surfaces, including tilted mudstones with sandstones on top of them. The canyon had large cobbles around the rim, likely transported there by large floods. Many of these cobbles were mylonites similar the ones we saw at the end of Day Two.

Our next stop was at the Salton Sea which is a landlocked water-body, formed as a result of northward extension of the Gulf of California, to accommodate the developing faults in the area. While the base of the Salton Sea is oceanic crust, the water itself is not that deep (~10s of meters). Interestingly, the Salton Sea is about 234 feet below sea level. Over the last 100,000 years or so, the water level has been decreasing continually. The restricted nature of sea lead to conditions with no upwelling, and therefore there is no thermohaline circulation that caused the sea to stratify and there is a good amount of bioactivity in the top layers. Every once in awhile this circulation will start up, and many of the fish die. The sea is now fed by agricultural runoff.

Obsidian Butte Outcrop

 Here we had the chance to see what was left of a rhyolitic, Pleistocene lava flow that quenched to obsidian. Rocks layered with obsidian and pumice and xenoliths were interesting features at this outcrop. These features indicate that an initially volatile-rich magma was subjected to decrease in pressure which led to the formation of these layered obsidian-pumice flows. As the volatiles began to escape, the magma was left with little/no gas and it quenched eventually to form glassy obsidian. The escape of bubbles was in fact facilitated by their size. The smaller bubbles that could not escape eventually formed the pumice layers. We also evidence of shearing and slow stirring of the magma at the surface. The rhyolites indicate that this area tends to have a high heat flow and a thin crust.

Presence of mud-volcanoes in the area, further establish the dominance of a high geothermal gradient in this area. These mud volcanoes are interesting because they are constantly migrating.The mud-volcano flows are essentially like basaltic lava flows, that flow slowly, traveling over larger distances owing to their low viscosity. The tops of the volcanoes were spurting out mud and bubbling out CO2.

Box Canyon

Tilted sandstone layers.  Photo Credit: Jennifer Kroeger

At Box Canyon, we observed tilted sandstone layers from the Pliocene with some conglomerates in the layers. These sandstones were tilted as the Gulf of California subsided during rifting. We saw evidence of cross-bedding and several channels indicating that most likely they formed in a braided river system. There was high grain size variability is the sandstones and conglomerates, so the depositional environment was likely close to the source. Also, we noted that gypsum was later precipitated in the fractures in the sandstone after deposition. Rip-up mud clasts were also found in both the sandstone and conglomerate indicating a high energy environment.

Mecca Hills

 At Mecca Hills, we stopped on the side of the road to observe a large anticline on the side of one of the hills. The sediment layers were most likely around 3 million years old, while the anticline was due to younger, active tectonics.

Pelona schist

 We stopped along the side of a highway dodging speeding vehicles, to observe the Pelona Schist that formed as part of the accretionary complex as the Farallon plate was subducting during the late Cretaceous period. The schist here underwent greenschist-facies metamorphism as is evidenced by the abundance of chlorite, biotite, and muscovite minerals. The rocks sections were well foliated and weathered on the top.

Joshua Tree – Jumbo Rocks

  At Joshua Tree National Park, we observed the Jumbo Rocks that are coarse-grained granites formed in the Cretaceous and Jurassic eras. Interestingly, the rocks are extremely homogeneous in composition and grain size without much texture. The rocks are jointed, that likely formed while the pluton was cooling to release stress. The joints were filled by dikes that had a very similar composition to the surrounding rocks, though we observed less biotite in the dikes. These dikes are possibly the remains of the magma that formed the pluton that came back up later to fill the joints after the joints formed during cooling.

Palms Canyon Oasis The last stop of the day was at Palms Canyon Oasis, where we observed Jurassic quartz monzonites with grey feldspar megacrysts. Here we observed large, single crystal alkali feldspars that were prominently larger than the surrounding grains. While it is not well-established how these megacrysts form, it has been proposed that fluid transport aided in the growth of these large phases.

Day 4

Salt Deposits
At this stop, we walked out on evaporite deposits. The evaporites were seemingly most NaCl but presumably had some amount of lithium and calcium chloride as well. The deposition of these evaporites is aided by the topography of the area.

 

Wind created evaporite formation. Photo Credit: Jackson Stiles

The area is a local low: structurally a small graben bounded by faults and mountains on either side drain into it. Water draining from the surrounding mountains enrich the water in minerals that then form evaporite beds as the water accumulates and evaporates in the graben. We also saw several interesting structures in the evaporite deposits including hair like structures formed by wind, beautiful halite crystals, and thin layers of evaporite formed on the surface of bubbles of briny water.

 

Vesicular rocks. Photo Credit: Jackson Stiles

Amboy Crater
At Amboy Crater, we looked at a cinder cone volcano and the associated extensive basalt lava flow. The cinder cone and basalt lava flow formed in the Pleistocene and their young age is reflected by the characteristic shape of the cinder cone as weathering has not changed its form much yet.  The extensive basalt flows seen here flowed over much larger areas than the rhyolite flows we previously saw due to the basalt having less silicate in it which lowers the viscosity allowing the lava to flow further. We examined bombs and other debris shot out from the cinder cone during its formation, although we did not actually walk up to the cinder cone itself.

The flow and pyroclasts were quite vesiculated and several flow indicators like ridges and folds visible. The cinder cone itself formed as lava was spit out of the vent as opposed to the usual flowing lava that would create other types of volcanoes. The cinder cone is formed as lava cools quickly after being launched into the air and falls back to the ground creating the characteristic conical shape made up of pyroclastics.  

Dish Hill

 Dish Hill was another volcanic cinder cone nearby; however, it was a few million years older. Due to weathering, and from mining for road fill, faces of this cinder cone had been dissected which allowed us to examine the interior structure of a cinder cone. Extensive weathering and oxidation also gave Dish Hill a reddish color rather than Amboy Crater’s black color.

Olivine and pyroxene xenoliths from the mantle. Photo Credit: Chenliang Wu (L: peridotite xenolith) and Jackson Stiles (R: pyroxenes)

At this stop, we saw more bombs and pyroclasts, both of which were larger for the most part. The dissected side of the cinder cone gave us access deeper into the cone where we found many peridotite xenoliths brought up from the mantle. We also saw granitic xenoliths from the crust that were brought up from the walls of the magma chamber and vent. Common in the rocks were olivine and pyroxene xenoliths.

Kelso Dunes

The Kelso dunes make up the largest field of windblown (aeolian) sand deposits in the Mojave Desert. The field is still active and includes migrating dunes, vegetation-stabilized dunes, sand sheets, and sand ramps. The grains are light-colored which leads to the conclusion that the protoliths are quartz and feldspar. A closer look at the grains themselves shows that they are fairly round and around 100 microns in the maximum dimension. These sand grains most likely originate from the Mojave River sink (west of the dune’s location). We also observed that the ripples on the dune face indicated wind direction, with the shadowed ripple portions on the lee face towards the wind. The south side of the dunes also held more vegetation than the lee side.

Cima Volcanic Field

Interior of a lava tube. Photo Credit: Chenliang

This volcanic field is made up of alkali basalt cinder cones and lava flows. These are associated with the development of the  Basin and Range. Most of the lavas in this area are younger than one million years.  The lack of erosion of the cinder cones and unweathered lava flows show the youth of these volcanoes. The lava tubes present in this field would have formed when a low-viscosity lava flow developed a hard crust (due to cooling of surface lava) that acted as a roof allowing the lava beneath to sustain high temperatures and continue flowing. Within the tube, marks, called flow ledges/lines, on the wall indicate different levels at which the lava flowed. Additionally, lavacicles (stalactites) and drip stalagmites are clearly visible inside of the tube. These could form when lava splashes onto the roof of the tube and slowly oozes down.

Mountain Pass Syenites

At this mountain pass, a carbonatite-syenite complex is approximately one billion years old. There is a mine nearby that extracts rare-earth elements from the carbonatite. Carbonatites are rare igneous rocks but have three models to explain their formation. Carbonatites are usually associated with undersaturated (low silica) igneous rocks; instead of silica tetrahedra, the anions are carbonate complexes. This rock can form directly by low-degree partial melts in the mantle, and melt differentiation. Another way is through liquid immiscibility between a carbonate melt and a silicate melt. Finally, extreme crystal fractionation may saturate CO2 levels in the magma, leading to the formation of carbonatites. Fun fact!: Mountain Pass used to be the largest rare-earth element mine in the world until China discovered large deposits which can produce up to 105,000 MT of rare earth minerals a year.

At this pass, we observed syenite (intrusive plutonic rock) with high amounts of orthoclase, along with minor amounts of hornblende and biotite.

Day 5
Red Rock Canyon State Park

The reddish rocks are Jurassic age sandstones that represent fluvial, lacustrine, and Aeolian environments, most likely having formed in a shallow, continental sea. The sandstones are overlain by gray Cambrian limestones. A closer look revealed that below the Jurassic sandstones lay Permian sandstones. These actually formed from large dunes, resulting in cross-cutting beds and dipping in a massive scale.

Aeolian Jurassic dunes. Photo Credit: Jackson Stiles

Late Cretaceous-early Tertiary back arc thrusting resulted in an inverted sedimentary sequence where older rocks are underlain by younger rocks during a retro-arc thrust event where the Farallon oceanic plate was being subducted beneath the North American plate.

 

Deepwater Paradise: Ainsa Basin- Spain

AAPG-RICE CANADIAN ROCKIES FIELD TRIP 2016

p4

The AAPG Canada Region welcomed Rice AAPG Student Chapter for a four day guided transect through the Canadian Rockies. This trip was supported in part by funds provided by SHELL.

Trip Leaders:

Dr. Clinton Tippett (Geoscience Leader), Dr. Kevin Root (Geoscience Leader) and Dr. Malcolm Ross (SHELL – Rice University)

Assistant trip leaders:

Lacey Pyle and Catherine Ross

Student Participants:

Alana Semple, Christopher Odezulu, Jingxuan Liu, Joyeeta Bhattacharya, Maryam Nasizadeh, Nancy Zhou, Wey Yi Foo, William Farrell,  Yue Yao and Zuyue Zhang

Day 1: Calgary to Lake Louise

Copithorne Ridge, McConnell Thrust at Mount Yamnuska, Lac des Arcs Region, Rundle Thrust Sheet Viewpoint (Harvey Heights), Grassi Lakes Devonian Section above Canmore, Kootenay-Fernie section, Mt. Norquay Overlook, Castle Mountain

IMG_1970

Leaders Clinton Tippett (R) and Kevin Root(L) explaining the regional geology of Jumping Pound Gas Field

The group at Grassi Lake

The group by the Grassi Lakes carbonates

The group looking at turbidites on a road cut section

The group looking at turbidites on a road cut section

13679991_10154973333043998_1386250187230286338_o

Alana is leaning on a fossilized log!

Day 2: Lake Louise to Fernie

Lake Louise, Cambrian Facies Change, Marble Canyon, Folds in the Cambrian Chancellor Formation, Redwall Thrust, Radium Hot Pool, Sinclair Canyon, Out-of-sequence Thrusts, Columbia River Overlook, Radium, Toby Formation, Windermere Lake Area,  Southern Rocky Mountain Trench, Fort Steele Area, Southern Rocky Mountain Trench, Elko Area

The tranquillity of Lake Louise in the morning

The tranquility of Lake Louise in the morning

A hike along the Marble Canyon offers a great view of sea green coloured glacial melt water streams

A hike along the Marble Canyon offers a great view of sea green-colored glacial melt water streams

 

 

 

 

 

 

 

 

 

 

 

8

Varied types of folds in the Cambrian Chancellor Formation

Enlarged view of fold in Chancellor formation

Enlarged view of fold in Chancellor formation

10

Kevin explaining the geology of Radium area while the whole group relaxes in lukewarm waters of the Radium hot water pool!

11

Clinton showing diamictites.

Day 3: Fernie to Waterton

Crowsnest Lake, Cardium Formation, Crowsnest Formation Volcanics, Frank Slide, Triangle Zone of the Outer Foothills

Picture1

Duplex in the Banff formation, highlighted in red colour outline

13

Crownsnest formation volcanics (A deer came here to pose as a scale for the geologists.)

 

 

 

 

 

 

 

 

 

 

 

 

IMG_2297

Canada’s deadliest rock slide known as Frank slide, devastated the town of Frank in 1903 when the overturned anticline made of carbonate rocks in the Turtle Mountain fell off probably due to extensive mining practices and alternate freeze-thaw of snow on the mountains which made incipient cracks propagate into vulnerable fractures and cause the mass wasting.

Day 4: Waterton to Calgary

Prince of Wales Hotel, Waterton Field, Triangle Zone structures in the Canyon of the Oldman River, Livingstone Gap, Okotoks “Big Rock” Erratic

16

St. Mary River formation dinosaur traces

Big Rock Erratic: The huge chunk of quartzite was transported by glacier in the Last Glacial maximum and is dissected longitudinally reason of which is still debated.

Big Rock Erratic: The huge chunk of quartzite was transported by glacier in the Last Glacial maximum and is dissected longitudinally, reason of which is still debated.

 

 

 

 

“End of the trip group photo” at the Big Rock Erratic From Left: Jingxuan Liu, Zuyue Zhang, Maryam Nasizadeh, Alana Semple, Catherine Ross, Joyeeta Bhattacharya, Nancy Zhou, Lacey Pyle, Wey Yi Foo, William Farrell, Christopher Odezulu, Clint Tipette, Yue Yao and Malcolm Ross. Behind the lens: Kevin Root

“End of the trip group photo” at the Big Rock Erratic

From Left: Jingxuan Liu, Zuyue Zhang, Maryam Nasizadeh, Alana Semple, Catherine Ross, Joyeeta Bhattacharya, Nancy Zhou, Lacey Pyle, Wey Yi Foo, William Farrell, Christopher Odezulu, Clint Tipette, Yue Yao and Malcolm Ross. Behind the lens: Kevin Root

Blog created by:Joyeeta Bhattacharya

ESCI 546 Basin Analysis: Field Trip to Ireland

Overview


ESCI 546 “Advance Topic in Basin Sedimentology and Stratigraphy ” participated in a field trip to County Clare, western Ireland, from May 2nd to May 12th, 2016. The class visited sea-cliff exposures of rocks found in the Western Irish Namurian Basin (WINB), which were deposited during the Upper Carboniferous (326 Ma – 317 Ma). The deposits represent a variety of sedimentary depositional environments, including fluvial-deltaic to deep water turbidites. The rocks were later obscured by fold-thrust related deformation associated with the Variscan (Hercynian) orogeny, brought on by rift-related deformation during the breakup of Pangaea. The WINB is an ideal location to evaluate the interconnectedness of the various sedimentary environments, in particular, linking the physical processes that shape the internal stratigraphy.

The first part of the class trip included a five day “basin overview” led by Professor Jim Best of the University of Illinois at Urbana–Champaign (UIUC), who has 30 years of experience working in the WINB. During this tour, students self-organized to develop research projects for the range of depositional environments. Students were then provided three days to work among the outcrops to pursue their respective projects. On the final day, these students led the class through the outcrops, presenting their specific findings.

Regional map of western Ireland (Lien et al., 2003; Kendall and Haughton, 2006)

 

Capture

Stratigraphic overview of the WINB (Tanner et al. 2011)

Participants


Professors: Jeffrey A. Nittrouer,  Jim Best (UIUC)

Post-doc: Hongbo Ma

Students: Andrew Moodie, Brandee Carlson, Sam Zapp, Simon Chan, Garrett Lynch, Brian Demet, Chenliang Wu, Pulkit Singh

Visiting Student: Matthew Czapiga (UIUC)

Teaching Assistant: Tian Dong

Day 1   Loop Head Cliffs: Ross Fm. (Deep Water Turbidite)


Cliff exposure of Ross Fm. at Loop Head Peninsula  (Photo Credit: Matthew Czapiga)

May 3rd

We arrived in Shannon, Ireland, on the morning of May 3rd. In the early afternoon, after settling into our rental home in Kilkee, we visited cliff exposures of the Ross Fm. near the Loop Head lighthouse. The Ross Fm. is a sandstone unit, interpreted as deep-water turbidite fan deposits. Among the lobes are a few channel features higher in the stratigraphic section. The Ross Fm. is the thickest near the Shannon Estuary (~380 m) and thins to the north, in the general direction of paleo flow.

_DSC1074

Ross Sandstone at the Bridge of Ross (Photo Credit: Matthew Czapiga)

 Day 2  Northern County Clare: Visean Fm. (Basement Limestone) and Clare Shale Fm.(Deep Water Shale)


May 4th

_DSC1051

Cliff exposure of Visean Limestone Burren Fm. near Galway Bay (Photo Credit: Matthew Czapiga)

We drove north for 2 hours from Kilkee to the south of Galway Bay at the northern end of County Clare. Here, we visited the Burren Fm., a Visean limestone unit that forms the basement of the WINB. This unit is interpreted to be a shallow-water carbonate deposit, likely associated with a shelf setting.  The unit contains variety of fossils, including rugosa corals and brachiopods.

 

 

 

IMG_0451

Clare Shale and Visean Limestone contact at St. Brendan’s Well (Photo Credit: Tian Dong)

 

 

Travelling to the south, we moved upsection to the “St. Brendan’s Well” outcrop to locate the contact between the Visean Limestone and the Clare Shale. The Clare Shale Fm. is the lowest unit of the WINB sedimentary fill, and consists of a deep marine black shale. At the contact of the Clare Shale and Visean Limestone is a phosphate rich bed, ~ 8 cm thick, interpreted to be a condensed section likely associated with an open marine environment, where sedimentation is extremely minimal.

 

 

 

 

 

 

Day 3    Point of Relief: Deep Water Deposit  (Ross Sandstone Fm.) and Slope Deposit (Gull Island Fm.)


May 5th

We visited the Bridge of Ross and the Ross Fm. to examine the sedimentary structures found within the turbidite deposits. One of the most famous structures here is the Ross Slide, a highly deformed, inter-bedded mudstone and sandstone unit, which contains various soft sediment deposition features, including sand volcanoes and syndepositional folds. The Ross Slide is more recently interpreted as a slump deposit, whereby external forces caused liquefaction of sand and mud and initiated motion that produced significant folding and deformation. The Ross Slump is very laterally extensive (10’s of kilometers long), and this significant size is considered to be associated with a seismic event as triggering the the deformation.

_DSC1066

Ross Slide near the Bridge of Ross (Photo Credit: Matthew Czapiga)

Moving up Section, we examined the contact between the Ross Fm. and the Gull Island Fm., identified by a thin layer of mud with a goniatite (ammonoid) band, which is likely associated with a condensed open-marine section.

The Gull Island Fm. is interpreted as a slope deposit, whereby numerous failures trigger mass transport of sediment that ultimately feed the Ross Fm. turbidite deposits. The Gull Island Fm. contains various styles of soft sediment deformation, including slides, slumps, growth faults, and mud volcanoes.

_DSC1099

Ross and Gull Island Contact near Point of Relief (Photo Credit: Matthew Czapiga)

At end of the day, we visited the Tullig Cyclothem, the formation atop the Gull Island. Here, this cyclothem represents alternating sequences of fluvial-delatic and near-shore, shallow marine deposits, indicated by a classic coarsening upward deltaic sequence of interfingering pro delta, interdistributary bay, and fluvial-deltaic deposits. The middle to upper Tullig Cyclothem is characterized by channels of various sizes, and the Upper Tullig sandstone possesses bedforms and terrestrial plant fossils, indicating a fully fluvial depositional setting.

_DSC1136

Cliff exposures of Tullig Cyclothem at Point of Relief (Photo Credit: Matthew Czapiga)

Day 4       Trusclieve: Fluvial-Deltaic Deposit (Tullig Cyclothem and Kilkee Cyclothem)


May 6th

We took a boat ride on the Shannon Estuary, in order to observe cliff exposures of the Middle to Upper Ross Fm., and the underlying Clare and and  Visean Limestone. The upper Ross Fm. contains numerous feeder channels that routed sediment to the fan lobe deposits of the Ross Fm.

L1050014

Upper Ross Formation (Photo Credit: Tian Dong)

L1050016

Large fold within the Ross Fm. (Photo Credit: Tian Dong)

 

 

 

 

 

 

 

 

 

 

 

 

 

Later, we drove to Trusklieve to visit the Tullig Cyclothem in detail, specifically, the changes in vertical stacking patterns. Stratigraphic Sequences of the Tullig Cyclothem at Trusklieve show that an overall coarsening upward trend is pervasive (as described above). Moving up section, there is an increase in the frequency of amalgamated channels bodies, which possess bedforms, barforms, and terrestrial plant fossils, all of which indicate a land-based fluvial-deltaic environment.

 

L1050045

Tullig Cyclothem at Trusklieve (Photo Credit: Tian Dong)

Overlaying this fluvial section is a thick transgressive mudstone that contains various types of marine fossils, including zoophycos, which is a trace fossil left behind by the movement of polychaete worms. Above this mudstone is a marine mud bed, rich with goniatites, and representing the final stage of the Tullig transgression. Overlying this is the Kilkee Cyclothem, which progrades overtop and marks of the onset of a new fluvial-deltaic progradation.

_DSC1201

Transgressive package within the Tullig Cyclothem overlain by the Kilkee Cyclothem (Photo Credit: Tian Dong)

 

Day 5       Killard: Fluvial-Deltaic Deposit (Tullig Cyclothem)


May 7th

We drove several kilometers north of Trusklieve to examine the Tullig Cyclothem at Killard Bay. We observed similar coarsening upward sand bodies, as well as sedimentary structures and plant fossils that are quite similar to those observed at Trusklieve. An interesting question arose regarding this outcrop: Why do the bedform foresets dip at such a shallow angle, much lower than angle of repose? Hongbo Ma is investigating this phenomenon, and has some interesting findings based on ongoing studies in the modern Huanghe River (China) which could be used to compare to the Tullig channel dunes.

IMG_0489

Foresets in Upper Tullig Cyclothem (Photo Credit: Tian Dong)

 

IMG_0474

Soft sedimentation deformation at Killard (Photo Credit: Tian Dong)

 

Day 6-8      Group Project 


May 8th – 10th

Students self-organized into four groups of two people each, and pursued independent research projects, conducted at various field sites for the range of depositional environments. On May 10th, each team presented the results of their individual projects to the class.  The following list describes the student groups and their respective project depositional environments:

Fluvial-deltaic (Trusklieve and Killard):                Brandee and Andrew

Pro-Delta/Shelf (Point of Relief and Killard):       Chen and Sam

Slope (Point of Relief):                                                Garrett and Brian

Turbidite (Bridge of Ross):                                         Pulkit and Simon

Day 9       Cliffs of Moher


May 11th

We visited the Cliffs of Moher on the northern end of County Clare. This location is distal part of the WINB, where it contains a condensed section of all the previously visited sedimentary formations. At the highest point of Cliff of Moher, stands the O’Brien’s Tower, an observation tower build by local landlord in the early 1800s. Standing by the tower, we had a spectacular view of the Loop Head peninsula and north Atlantic, which is a great way to conclude this wonderful trip.

L1050076

Cliff of Moher (Photo Credit: Tian Dong)

 

L1050086

O’Brien’s Tower at Cliff of Moher (Photo Credit: Tian Dong)

Rice Guadalupe Mountains Field Trip – April 22-27, 2016

Earth Structure and Deformation: Field Trip 2016

It was a nice and sunny Saturday when we started our journey on I-10 going west of Houston. We crossed Pleistocene and thin Pliocene rocks until we were near the Little Low Miocene Hills of Columbus, a very small strip. Finally, we arrived at our first stop where lower Cretaceous rocks onlap onto basement rocks. We noticed that Oligocene rocks were missing.

 

Day 1:

Walnut Formation Road Cut (Stop 1)

Location N 030.29947 W 097.82767

Elevation: 297 m

At this stop, we saw Glenrose basement rock overlain by Walnut Formation (110 Ma). The lithology of the Walnut Formation is a lime mud marl (limestone), and the beds seen are horizontal and fissile. The beds contain fossils and some of the fossils found include the famous Devil’s toenail (exogyra), oyster, snails and warm burrows. The worm burrows are indicative of a depositional environment with ubiquitous bioturbation. Since it was quiet enough for worms to burrow and mud to be deposited, we speculated that the depositional environment was lagoonal. If this is the case, it could be an indicator of paleo sea level.
There is an enigma surrounding the Walnut formation. If it was formed close to sea level, how is it that the elevation is now 297 m today? The question of when and how the Llano Uplift (part of the Edwards Plateau) occurred is still a mystery in geology. Some researchers have pinned it to Oligocene time. As far as how it occurred, several theories exist: (1) magmatic underplating from ultramafic intrusions along the Balcones Escarpment; (2) a flexural response from forebulge to the coastal basin; and (3) Jurassic salt moving to the surface, causing Cretaceous rocks to slide and creating offset.

 

000

 

 

 

 

Transition from Glen Rose to Walnut Formation moving upwards. Glen Rose has harder, regular bedding, where Walnut has muddy Cretaceous limestone.

001

 

 

 

Close-up of the Walnut Formation. Contains visible shelled organisms and exhibits diffuse bedding.

 

 

 

Ellenberger Group, Honeycut Formation (Stop 2)

Location: N 030.553777 W 098.26020

Elevation: 246 m

The Honeycut Formation is Ordovician in age. About 100 m of limestone has been eroded here in comparison to the Walnut Formation, and this is reflective of the erosional window of the Llano Uplift. The formation is highly laminated and contains bacterial mats (stromatolites which grow on tidal flats). There might also be some stylolites although it is not certain. Barnett Shale, which is Mississippian-Devonian in age, can also be seen at this outcrop, but it is very thin.
In West Texas, the Ellenberger limestone is a major carbonates reservoir where it was exposed, karsted, faulted, and later sealed. The faults here are related to the Ouachita orogeny (which is younger than 300 Ma) and analogous to the Alleghanian orogeny of North America. Although the Honeycut marble is the downthrown side of the fault while the granite is upthrown side, the granite appears to be eroding faster than the marble. The result of this is a reverse topography instead of what we would expect from faulting.

 

002

 

 

 

Stromatolite in the Honeycut Formation.

 

 

 

 

Backbone Ridge (Stop 5)

Location: N 030.64519 W 098.41574

Elevation: 289 m

The Cambrian rocks are beneath the Town Mountain Granite, so we should have been in a graben (central downdrop block), but instead we were standing at a local high point. This is another instance of inverted topography due to erosion of the granite which has relatively low resistance. At this stop, we were standing on normal fault with two more faults running perpendicular in the Cambrian rocks before us. The Lion Mountain green sandstone across the road was formed by worm droppings in an anoxic environment, creating a mineral called glauconite. The sandstone is pelletal in texture and contains white lenses that we identified as trilobite hash. There are little muscovites on the surface of the trilobite deposits suggesting past metamorphism. Underlying the Lion Mountain is the upper Hickory Sandstone containing iron oolites, indicating a ferriferous depositional environment. Above the dark green sandstone we observed a color change to whitish-green and a compositional change to coarser grains containing more quartz. This is indicative of the depositional environment moving inland up the strata with the upper rock likely deposited in a shoreface to backshore setting. The whitish-green then transitions upward into a pink and green rock. The presence of herringbone bedding within this upper section signifies a tidal phase, perhaps an offshore to lagoonal environment. Overall the Lion Mountain Sandstone is less resistant than the overlying strata. Within the whole body we found an oxidized strike slip fault with mellow plunge in the slickenlines.

003

 

 

 

 

 

 

 

 

Predominately strike-slip fault (with some thrusting) in Lion Mountain Sandstone. Directionality indicated by slickenlines on red Fe-stained parts of glauconite on right side of fault.

 

 

004

Students looking at the Lion Mountain Sandstone.

 

Valley Spring Gneiss and Granite, Inks Lake State Park (Trip 6 PC Guide Stop 3)

Location: N 030.74855 W 098.35748

Elevation: 278 m

Here we saw heavily deformed quartzofeldspathic gneiss among other schists and gneiss. Up to four generations of folds and five associated foliations were able to be identified, all of which except the last were penetrative and seen through the whole area. Granitic dikes and intrusions were present and responsible for local metamorphism.

                                                                                005                                                                                                                                                                                                   

 

 

 

 

 

Granitic dike cutting through the Valley Spring Gneiss.

006

 

 

 

 

 

 

 

Distinct F3 fold in the Valley Spring Gneiss.

 

Valley Spring Gneiss (Trip 6 PC Guide Stop 2)

Location: N 030.75404 W 098.67634

Elevation: 281 m

For our last stop on Day 1, we examined a synform in the Valley Spring Gneiss by the Llano River. We measured the attitudes for several mineral foliations, plotted them on a stereonet, and attempted to match the data to our observations. At another spot by the river, we observed a Valley Spring pluton dated approximately 1250 Ma with a dynamothermal overprint dated 119 Ma. We noted that there was not much foliation in the country rock. The texture of the rock suggests that it was not highly metamorphosed.

 

007

 

 

 

 

 

 

 

Old Valley Spring pluton by the Llano River.

 

 

Day 2:

Highway 71 Outcrop (Mosher Day 1 Stop 4)

Location: N 030. 63010 W 098.52912

Elevation: 296 m

At this stop we observed the graphitic Packsaddle Schist. Lightened zones indicate the graphite was volatilized during intrusion, oxidizing the rock along the boundary and bleaching it. Overall the schist is blue in color with white folded quartz veins. It is fairly resistive and contains S1 and S2 folds. Little knots of quartz represent the old fold axis of the formation, and the initial folds appeared to be very ductile. We measured the trends and plunges of various foliations. The folds are typically isoclinal with some shearing, and the plunges of the fold axes range from steep to shallow. Within the schist we observed some vestige of the sedimentary protolith, a dark shale stacked atop a light sand. We noted sheaf folds and contemporaneous multi-directional folding, unique kinematic indicators for shear. The timing of the main assembly of the schist dates to 1140 Ma, predating the intrusion of the Town Mountain Granite. These schists are roughly the same grade as the gneiss we saw the previous day; both were metamorphosed at the amphibolite facies.

Some trends and plunges of fold axes:

  1. N50ºW, 43º
  2. N20ºW, 34º
  3. N40ºW, 15º
  4. N55ºW, 31º
  5. N15ºW, 39º
  6. N60ºW, 12º

 

008

 

 

 

 

Packsaddle Schist containing graphitic layers (dark banding) and folded quartz veins (white).

 

 

Cordierite (Added Stop)

Location: N 030.53540 W 098.44107

Elevation: 282 m

The next roadcut we stopped at was notable because of the presence of cement-like cordierite nodules which statically overprint the rock’s foliation. Cordierite is characteristic of high temperature, low pressure contact metamorphism associated with later stage plutonism. It contains no clear crystal structure and is only visible in thin section. Since the cordierite overprints foliation but exhibits none itself, we know that this stage of plutonism postdates folding. The Packsaddle rock here is more schist-like than what we saw at the last stop; the protolith is less obvious.

009

 

 

 

 

Packsaddle Schist with cordierite indicated by the weathering pattern. The cordierite is more resistant than the schist.

 

 

White Creek Ford (Mosher Day 1 Optional Stop 3)

Location: N 030.45692 W 098.482931

Elevation: 255 m

At this stop, we had an opportunity to see a rock specific to Texas, llanite. Llanite typically has blue quartz phenocrysts and K-feldspar. We saw some of these diagnostic characterics in the rocks surrounding the llanite dike that cut through the area. This dike is dated at 1098 Ma and indicative of late-stage rhyolitic igneous activity. Due to the lack of metamorphic overprint, the area is estimated to be at least 20 million years younger than the Town Mountain Granite not far from there. Further, the surrounding rocks had an aphanitic texture due to being injected into the mix at a shallower depth. They had to formed near the surface to avoid crystal growth and develop this texture.

An interesting feature we observed in this area included veins that were folded. First, in order for the veins to be formed, the rocks had to exhibit brittle behavior by cracking, and then later on exhibit ductile behavior for the veins to then be folded. This brought up the transition between brittle and ductile behavior which can occur due to changes in temperature, overburden pressure, or strain rate. The boudinage of the veins also indicated flow after formation. We also saw some crenulation folding that indicates a later extensional event due to its lack of offset from the main formation.

010

 

 

 

 

 

Classic “boudinage” feature.

 

 

 

Sandy Creek Shear Zone (Mosher Day 1 Stop 3a)

Location: N 030.54169 W 098.56100

Elevation: 292 m

The Sandy Creek Shear Zone is home to unique rocks that were crushed at high pressure and low temperature. We inferred these conditions from the crushed rock grains that lack evidence of recrystallization. At this stop we could also see another rock very specific to Texas, the Town Mountain Granite. This felsic granite appears to have orthoclase, hornblende, K-feldspar, quartz, and mica. The granite owes its pink color to abundant K-spar. In some places, the rock looks very “beat up” in that it has discrete fractures and seems to have undergone violent deformation at temperatures much lower than the solidus of the rock. Very little of the protolith was left untouched. The granite has been sheared but not recrystallized due to its location at shallow depths in the crust.

This formation brought up the brittle vs. ductile deformation question again when we observed that the sheared granite was brecciated to a fine-grained texture. Does the cataclastic but cohesive nature of the rock mean that there was some sort of cataclastic flow? This formation was a prime example of the blurred and ill-defined boundary between brittle and ductile deformation and could perhaps represent some sort of boundary condition between these two categories. The fact that there are mylonites half a kilometer down the road from this formation and its relative location indicates that the Sandy Creek Shear Zone is a point of contact between the Coal Creek and Packsaddle domains.

011

 

 

 

 

 

 

 

Brecciated sheared granite exhibiting cataclastic flow.

 

 

 

Augen Gneiss (Mosher Day 1 Stop 3b)

(Approximate)

Location: N 030.54169 W 098.56100

Elevation: 292 m

The gneiss here is similar in lithology to the rock at the Sandy Creek Shear Zone. Unlike the previous stop, this rock has been recrystallized after flowing. High-temperature ductile flow and partial melting occurred. This outcrop is a mylonite, meaning that grain size was reduced by plastic deformation during recrystallization. Minerals more resistant to grain size reduction, such as orthoclase feldspar, were rolled during deformation, resulting in clear mineral lineations and classic augen gneiss eye-like feldspar features. These rocks were clearly hotter than at the previous site, yet sit topographically higher, indicating that they likely did not undergo contemporaneous deformation.

012

 

 

 

 

 

 

Augen gneiss outcrop with mineral lineations lying on a foliation plane.

 

 

 

 

Red Mountain Ranch (Mosher Day 1 Stop 3c)

Location: N 030.51822 W 098.55237

Elevation: 312 m

Here the cataclastic flow and mylonite from the previous two stops (4 and 5 respectively) are interwoven. This leads us to believe that the two different flow features at their respective sites must represent the early and late stage of the same shear zone. Additionally, this locality is near the transition into the Packsaddle Schist, sitting at the base of the Coal Creek domain.

013

 

 

 

 

 

 

 

Interwoven cataclastic flow and mylonite.

 

 

 

Serpentinite Quarry (Mosher Day 1 Stop 2)

Location: N 030.47915 W 098. 63175

Elevation: 332 m

The serpentinite seen at the quarry here is a 6 km long section of the Coal Creek Domain. Derived from ultramafic, low crustal rocks, the serpentinite records a complex history of multiple instances of metamorphism, serpentinization, and deformation. It is thought that the serpentinite was deposited originally as a olivine-rich harzburgite and was subsequently serpentinized during tectonic emplacement. Following emplacement, the unit underwent regional deformation and metamorphism during which it was de-serpentinized. Finally, as granites were emplaced in the area, associated metamorphism anthophyllite grew and, as temperatures fell, serpentinization happened again due to hot water from the granite.

014

 

 

 

 

 

Serpentinite quarry at the final stop.

ESCI 322 Field Trip: Mysterious Visitors from the Deep

Pic1

Photo credit: Hehe Jiang

This blog describes the 3-day field trip that the Fall 2015 ESCI 322 class took to northern California with Professors Cin-Ty Lee & Rajdeep Dasgupta and TA Laura Carter, as told by the undergraduate students: Sofia Avendano, Anthony Foster, Alexandra Homes, Garrett Lynch, Oliver Lucier, Ian Mellor-Crummey, Leila Wahab, Shannon Wang, and Sam Zapp.

Day 1:

Marin Headlands (chert):

Pic2

Garrett Lynch in front of deformed cherts

This site overlooked San Francisco Bay directly across the Golden Gate Bridge. During the Jurassic period, following Pangaea, the Farallon plate subducted underneath the western North American plate.

At this stop we saw silica-rich cherts on top of ancient oceanic crust. The cherts were once laminated sedimentary deposits formed from diatoms and during subduction were scraped off as part of the accretionary prism. These specific cherts formed near the equator, probably during the Jurassic era. In composition, these cherts are 99% silica, but also contain some iron and manganese. This composition arose as iron and manganese were dispelled from the mid-oceanic ridges and deposited within the silicic ooze that becomes chert. We also noticed fractures filled with quartz in the form of white veins. Over to the right we saw darker, older, green bands, which had not been oxidized.

Marin Headlands (pillow basalts):

Pic3

Students Oliver Lucier and Sam Zapp looking at a pillow basalt outcrop with Garrett Lynch and Alexandra Holmes looking on from above and TA Laura Carter from below.

The pillow basalts here formed from magma that upwelled due to the divergent boundary at the mid-ocean ridge and was erupted underwater. Zoned phenocrysts of plagioclase feldspar were visible, indicating that they grew intrusively before eruption. The surrounding fine grained matrix was extruded on the seafloor where it cooled quickly. The edge of each pillow featured a glassy rind where the surface of the lava body cooled even quicker with direct contact with the water. Layers of chert were deposited on top of these pillows in a marine setting.

Pic5

Professor Dasgupta discussing pillow basalts with the students

 

 

 

 

 

 

 

 

Tiburon Peninsula (Eclogite, blueschist, and peridotite, boulder outcrops):

Pic6

Eclogite. Photo credit: Prof Cin-Ty Lee

Here we saw a number of boulder outcrops. Eclogite needs high pressure and high temperature conditions to form, so its presence was indicative of subduction zone setting. Chemically, it is very similar to the pillow basalts we saw earlier at the Marin Headlands, suggesting this may be the protolith. However, the eclogite samples we saw were also enriched in sodium, probably from hydrothermal processes, giving a special form of pyroxene: jadeite. In eclogite, the aluminum in the protolith plagioclase is now held in garnet. As it moved back up through the crust, some of the eclogite retrograded into blueschist, greenschist and amphibolite. The heterogeneity of the metamorphic grade may have been caused by uneven distribution of fluids. The kinetics of retrograde metamorphism can be slow, but the presence of fluids makes retrograde metamorphism occur faster.

 

Pic7

Students looking at a peridotite xenolith

 

The last outcrop we saw here was composed of peridotite. It contained orthopyroxene and olivine, so it would be classified as harzburgite. Peridotites with a much greater amount of orthopyroxene are lherzolite. These peridotite xenoliths had a slightly brown / tan coloring due to the weathering at the Earth’s surface. We also saw some serpentinite—altered peridotite—in the area.

 

 

 

Bolinas Lagoon (San Andreas fault, SEALS!):

We observed a rookery of seals accompanied by a lone sea lion as if he meant, through his presence, to elicit an ironical play upon a Danish children’s story. Abreast of these seals, two shovelers swam, feeding, and one merganser swooped through, low, tantalizing the water.

Point Reyes Visitor Center / Earthquake Museum:

Here we did a short nature walk travelling along the path of the San Andreas fault. We saw a fence that was displaced several feet due to previous movement along the fault, which is evidence of an ongoing right lateral strike slip fault.

The beach, the cliffs:

Pic8

Students looking at an unconformity on the beach at Point Reyes. Photo credit: Laura Carter

Along Point Reyes on the Pacific Ocean there was a series of cliffs with igneous outcrops that were the roots of a magma chamber from the Cretaceous next to marine sediments from the Miocene, representing a large unconformity. Here, we could see cross cutting relations in the igneous outcrops where magmas of different compositions interacted. The parental magmas were more basaltic, while the more felsic magmas were much more evolved. The intruding felsic magmas were much more viscous, so they mixed in some places but stayed clearly separate in others, and then froze in place. Mixing of the magmas indicated that the surrounding rock was still magmatic mush when they mingled.

Sharper boundaries between two magmas is also visible. This was likely due to the fact that basalt has a higher melting point, so when it cooled, it contracted and pulled some of the surrounding liquid in. These intrusions occurred further inland from the subduction zone, around 10 km below the surface.

Day 2:

Sedimentary Road Cuts, Ione Formation:

In the foothills of the Sierra Nevada, we saw an outcrop on the exposed shoulder of a highway. Sediments had been collected from the Sierra Nevadas and compacted into layers. The layers originated from granodiorite which lost much of its magnesium and iron, leaving behind what became predominantly kaolinite (Al2SiO5). The lower layers of laminated deltaic sediment gave way to cross-bedding features as a fluvial system moved through the area. At the edges of the formation, there was evidence of soft sediment deformation.

Silver Lake:

We also stopped at Silver Lake for lunch. Beside the lake there were these interesting boulders which appeared to contain clasts of petrified wood. Across the lake we saw large lava flows of andesitic magma, now part of an imposing mountainside.

Pic9

Andesitic lava flows overlooking Silver Lake. Photo credit: Prof Cin-Ty Lee

Mono Lake:

The edge of Mono Lake contains massive collections of tufa deposited in towers. We learned that these tufa deposits are a result of the very alkaline water from the lake mixing with calcium rich spring water from the Sierras, which precipitates calcium carbonate (CaCO3). The tufa deposits become visible and form large columns due to the water level of Mono Lake lowering over time. In the past, the springs feeding Mono Lake were drained to provide water for places like Los Angeles and other urban areas, which made more and more of the tufa deposits visible. Only in recent years has this been slowed and Mono Lake protected.

Pic10

Tufa towers at Mono Lake. Photo credit: Ian Mellor-Crummey

Day 3:

Long Valley Caldera:

The Long Valley Caldera is in the Basin and Range region, which underwent extension. The Caldera was active 2 million years ago, but the last eruption occurred 700,000 years ago and erupted 700,000 m3 of rhyolite. The eruption style was Plinian, which is very explosive, caused by magma fragmentation, and characterized by fine ash. The ash of the eruption spread throughout the western US. There were also resurgent domes with the same magma composition, but with effusive style eruptions since the magmas had already been degassed.

The youngest lava flows were 7,000 years old.  Under the Basin and Range extension, decompression allows the mantle to cross the solidus, which leads to alkalic basaltic magmatism. Basalts that re-melt the crust fractionate and form rhyolites, so there are both extremes here: basalts and rhyolites. It is still unclear how basalts skip to rhyolites with no intermediate composition.

Pic11

Glacial moraine in front of the Sierra Nevadas on the edge of Long Valley Caldera

The actual magma body was 10 km below the surface. The magma body builds up pressure, creating fractures, and, when the pressure exceeds the yield stress of the rock above, the system evacuates and the roof collapses. This has left a low, flat ~10 x 20 km area. Fumaroles, where magmatic gases were still escaping due to residual heat, were also visible.

Around the caldera, there were also moraines, large sediment mounds moved by glaciation, visible along the outskirts in front of the Sierras.

Pic14

Long Valley ignimbrite deposit at Owen’s Gorge. Photo credit: Prof Cin-Ty Lee

Owen’s Gorge:

Pic12

Long Valley ignimbrite containing pink pumice and granitic lithics

At the base of the gorge, we saw evidence of a huge rhyolitic ignimbrite, which must have erupted over an incredibly short period of time (estimated at around 6 days). There were three different layers denoting sequential eruptions. The lowest layer was more porous, with many lateral fractures and no evidence of compaction, which indicates that the lowest layer cooled before the weight of the next eruption could deform it. The texture of this tuff was friable, easily breakable, and it was more silicic than the upper layers. The first layer was probably an initial pulse of small eruptions right before the large eruption. Weak precursor eruptions tend to have ashfall rates slower than cooling rates.
The middle layer had a very clear fabric with small pumice ejecta elongated and oriented in the same direction, which shows that the layer was compacted. Thus it cooled slower than the layer below. The strain of the rock can be found from the aspect ratio of the elongated clasts, perpendicular to the bedding. This layer was welded ignimbrite, which contained fiamme, and was formed under high temperature and pressure. Jointing occurred after cooling due to contraction.

Pic13

Long Valley ignimbrite containing pink pumice and granitic lithics

 

The upper layer was mostly ash with pre-existing metamorphic, Paleozoic clasts caught in the ash (lithics). There were also pink pumice clasts that also have an individual fabric, which probably came from a different eruption, and had elongated vesicles caused by compaction. There was no larger scale fabric because there was not enough overpressure to deform the material, so the last eruption must have cooled quickly.

 

 

 

 

Panum Crater:

Pic15

Flow textures in banded obsidian layers

Panum Crater is what remains of a rhyolitic plug-dome volcano. Volcanic eruptions in this area began around 40,000 years ago. Panum Crater itself is approximately dated at 650 years old and is the youngest in the area. The explosion occurred as a magma bubble heated the water table into instant, high-pressure steam. Pumice was the first to be expelled from the volcano, and deposited around the outside of the crater. Following, breccia formed a dome over the crater, followed by lava flows that cooled to obsidian, which dominate the landscape.

Pic16

Vesicles in the pumice at Panum Crater. Car keys for scale. Photo credit: Prof Raj Dasgupta

Pic17

Highly zoomed image of the vesicle walls in the Panum Crater flows. Photo credit: Prof Cin-Ty Lee

The rhyolitic eruptions in the crater produced very silicic lava (roughly 76% SiO2), which is highly viscous and created the two main types of rock we saw: pumice and obsidian. The pumice was very low in density and highly vesicular. The vesicles formed from trapped air bubbles, indicating that the lava solidified quickly. Obsidian had little to no bubbles, but is the same composition as pumice. The obsidian cools quickly forming a glass, evidenced by the black rock’s conchoidal fracturing we saw.

A curious sample of rock we found looked like obsidian but had what looked like mud cracks on its surface. This was actually a breadcrust bomb formed from molten lava chunks flung into the air. The outer surface cooled rapidly, but the inside was still molten, so the gases inside continued expanding. This cracked the surface of the rock, causing it to look like the crust of a bread loaf.

Geologically speaking, obsidian never lasts very long. Devitrification causes glass to be more like rock and less like glass, so It is difficult to find glassy obsidian older than 10 thousand years old. The more vesicular the obsidian is, the faster the rate of devitrification since water gets in the vesicles. Thus, the rock samples at Panum were much younger than the samples at other formations we studied.

Basaltic Phreatic Deposit:

Pic18

Deformation and bedded phreatic ash deposits with Alexandra Homes for scale

On our way from Panum Crater, we stopped to examine an omega-shaped formation on the side of the road. Upon close inspection, we found the rock to be very fine-grained and soft, with cross-bedding evident on the folds. This was formed when a basaltic flow erupted underwater. When basalt hits groundwater, it fragments and becomes very, very fine-grained, creating the soft texture that we observed instead of the texture we saw in previous basalt deposits. The deformation is very similar to soft-sediment deformation, and most likely occurred when the rock was still warm and ductile. Cross-bedding was likely a result of basaltic ash settling in bodies of water nearby, creating the sloped deformation, and cross-bedding typical of river systems.