Welcome to GeoUnion, the graduate student body of the Department of Earth, Environmental and Planetary Sciences. GeoUnion strives to supplement the overall graduate student experience at Rice and DEEPS. GeoUnion represents DEEPS in the overall Rice grad student community, acts as a liaison between students and faculty and organizes a number of intra- and inter-departmental events throughout the academic year.

Date | Event |
---|---|
August 19-23 | O-Week |
September 6-8 | Overnight Camping at San Marcos |
September 13 | Welcome Barbecue |
Cancelled because of Imelda | Pre-GSA talk |
October 12-15 | Field Trip to Big Bend |
October 25 | Halloween Kickball Tournament |
November 26 | Multicultural Thanksgiving! |
Dec 6 | Pre-AGU practice session |
TBA | Enlightenment |


Living in Houston (to be updated)
Here’s a list of the resources that you would need to use frequently as graduate students at Rice. The websites of the Rice Graduate Student Association (GSA), Office of International Students and Scholars (OISS), Graduate and Postdoctoral Studies (GPS) are platforms which graduate students can use to keep track of upcoming events, funding opportunities, changes in rules and regulations, etc.
Living in a vast city like Houston and exploring a new place can also be challenging, and so we have compiled a list of recommendations for housing and fun things to do in the Space City!







Chenguang Sun wins prestigious award from the Mineralogical Society of America
/0 Comments/in News /by Linda WelzenbachMineralogical Society of America has selected EEPS postdoctoral researcher Dr. Chenguang Sun for the society’s 2021 MSA Award. The Mineralogical Society of America Award is intended to recognize outstanding published contributions to the science of mineralogy by relatively young individuals or individuals near the beginning of their professional careers. The work must have been accomplished either before reaching the age of 35 or within 7 years of the awarding of the terminal degree. Dr. Sun is recognized for his work on interpretation of trace elements in minerals and rocks and interactions between carbonatite and peridotite and genesis of kimberlitic magmas.
Dr. Sun received his Ph.D. from Brown University in 2014 and held a post-doctoral fellowship at Woods Hole Oceanographic Institution from 2014 to 2016. Since summer of 2016, Dr. Sun has been a post-doctoral scholar at the EEPS department of Rice University. Starting this month, Dr. Sun will join University of Texas at Austin as a tenure-track assistant professor.
Kirsten Siebach selected for Mars 2020 Mission
/0 Comments/in News /by Linda WelzenbachMIKE WILLIAMS
Martian geologist Kirsten Siebach among 13 chosen by NASA for rover mission
Kirsten Siebach has to persevere a little longer, waiting for her ship to come in.
That ship is in space, carrying a rover called Perseverance to Mars. And Siebach, a Martian geologist at Rice University, is now one of 13 scientists recently selected by NASA to help operate the rover and scout for samples that will eventually be returned to Earth.

An illustration shows the rover Perseverance, now on its way to Mars, and its PIXL instrument in operation. Kirsten Siebach, a Martian geologist at Rice University, is one of 13 scientists selected to help operate the rover. Image courtesy of NASA/JPL-Caltech
The rover, launched in July and landing next February, is the first of three missions that will relay pieces of the Red Planet back home. Perseverance will identify, analyze and then collect samples that scientists hope contain signs of ancient microbial life.
A second mission led by the European Space Agency will pick up the collected promising samples and launch them to Mars orbit. A third mission will dock with the orbiter, take the samples and bring them to Earth, likely in the early 2030s.
Siebach, an assistant professor of Earth, Environmental and Planetary Sciences, will be a main player in the first mission, helping direct Perseverance as it stops along an appointed path to look for interesting features and select the precious samples. Her proposal was one of 119 submitted to NASA for funding.

Kirsten Siebach
“Everybody selected to be on the team is expected to put some time into general operations as well as accomplishing their own research,” she said. “My co-investigators here at Rice and I will do research to understand the origin of the rocks Perseverance observes, and I will also participate in operating the rover.”
That duty, not unfamiliar to her as a member of the Curiosity rover team, will help her choose Mars rock and sand targets for analysis by Rice data scientist Yueyang Jiang, an expert in machine-learning algorithms, and research scientist Gelu Costin, a mineralogist.
“Because there is only one rover, the whole team at NASA has to agree about what to look at, or analyze, or where to drive on any given day,” Siebach said. “None of the rovers’ actions are unilateral decisions. But it is a privilege to be part of the discussion and to get to argue for observations of rocks that will be important to our understanding of Mars for decades.”
The landing site, the 28-mile-wide Jezero Crater, was selected for its history; it once hosted a lake and river delta where microbial life may have thrived over 3 billion years ago. Siebach is particularly excited to investigate carbonates, the products of atmospheric carbon dioxide dissolved in water that on Earth usually settle into the landscape as limestone. They often contain fossils.
“There are huge packages of limestone all over Earth, but for some reason it’s extremely rare on Mars,” she said. “This particular landing site includes one of the few orbital detections of carbonate and it appears to have a couple of different units including carbonates within this lake deposit. The carbonates will be a highlight of we’re looking for, but we’re interested in basically all types of minerals.”

A colorized image of Jezero Crater, the target for NASA’s Perseverance rover. Kirsten Siebach, a Martian geologist at Rice University, is one of 13 scientists selected to help operate the rover. Image courtesy of NASA/JPL-Caltech/MSSS/JHU-APL
The primary instrument the Rice team will be using on Perseverance is PIXL, short for Planetary Instrument for X-ray Lithochemistry, which is designed to identify chemical elements while also providing closeups of soil and rocks with a resolution about the size of a grain of salt.
Siebach, Liang and Costin plan to develop computational and machine-learning methods that produce mineral maps of samples based on their high-resolution chemistry. They also aim to establish a context for samples that will eventually come back to Earth and could reveal the signatures of historic life on Mars.
It will take a couple months after landing to validate Perseverance before Siebach and the others get to start their scientific inquiry. Then the long game begins.
“Occasionally, something hits Mars hard enough to knock a meteorite out, and it lands on Earth,” she said. “We have a few of those. But we’ve never been able to select where a sample came from and to understand its geologic context. So these samples will be revolutionary.”
EPSL: Assessing the presence of volatile-bearing mineral phases in the cratonic mantle as a possible cause of mid-lithospheric discontinuities
/0 Comments/in Recent Publications /by Rajdeep DasguptaAuthors: Sriparna Saha, Ye Peng, Rajdeep Dasgupta, Mainak Mookherjee, Karen M. Fischer
Abstract: A number of possible hypotheses have been proposed to explain the origin of mid-lithospheric discontinuities (MLDs), typically characterized by ∼2-6% reductions in seismic shear wave velocity (Vs) at depths of 60 km to ∼150 km in the cratonic sub-continental lithospheric mantle (SCLM). One such hypothesis is the presence of low-shear wave velocity, hydrous and carbonate mineral phases. Although, the presence of hydrous silicates and carbonates can cause a reduction in the shear wave velocity of mantle domains, the contribution of volatile metasomatism to the origins of MLDs has remained incompletely evaluated. To assess the metasomatic origin of MLDs, we compiled experimental phase assemblages, phase proportions, and phase compositions from the literature in peridotite +H2O, peridotite +CO2, and peridotite +H2O +CO2 systems at P-T conditions where hydrous silicate and/or carbonate minerals are stable. By comparing the experimental assemblages with the compiled bulk peridotite compositions for cratons, we bracket plausible proportions and compositions of hydrous silicate and carbonate mineral phases that can be expected in cratonic SCLMs. Based on the CaO and K2O contents of cratonic peridotite xenoliths and the estimated upper limit of CO2content in SCLM, ≤∼10 vol.% pargasitic amphibole, ≤∼2.1 vol.% phlogopite and ≤∼0.2 vol.% magnesite solid solution can be stable in the SCLM. We also present new elasticity data for the pargasite end member of amphibole based on first principles simulations for more accurate estimates of aggregate Vs for metasomatized domains in cratonic mantle. Using the bracketed phase compositions, phase proportions, and updated values of elastic constants for relevant mineral end members, we further calculate aggregate Vs at MLD depths for three seismic stations in the northern continental U.S. Depending on the choice of background wave speeds of unmetasomatized peridotite and the cratonic geotherm, the composition and abundance of volatile-bearing mineral phases bracketed here can explain as much as 2.01 to 3.01% reduction in Vs. While various craton formation scenarios allow formation of the amphibole and phlogopite abundances bracketed here, presence of volatile-bearing phases in an average cratonic SCLM composition cannot explain the entire range of velocity reductions observed at MLDs. Other possible velocity reduction mechanisms thus must be considered to explain the full estimated range of shear wave speed reduction at MLD depths globally.
Saha, S., Peng, Y., Dasgupta, R., Mookherjee, M. & Fischer, K. M. (2021). Assessing the presence of volatile-bearing mineral phases in the cratonic mantle as a possible cause of mid-lithospheric discontinuities. Earth and Planetary Science Letters 553, 116602. doi:10.1016/j.epsl.2020.116602
IMPORTANT NOTICE
Because of COVID-19, the field trip is being postponed to later (date TBD) this year. The seminar will continue via remote meetings through the end of the Spring 2020 semester.
2020 EEPS FIELD EXPEDITION
As earth scientists we seek to understand the natural processes that have shaped the world around us through time. The most fundamental requirement to acquiring a deeper understanding of these mechanisms is through observation. EEPS has a strong heritage in field-based research that when combined with analytical excellence, produces skilled scientists with a broad view of Earth as a system. While Rice University is well placed to take advantage of a broad array of research resources, students in Houston do not always have immediate access to nearby geological sites that represent Earth as a system.
A generous gift from Mike Johnson enables EEPS students the opportunity to observe classic and fundamental geologic concepts in the field. Students are in charge of proposing, selecting and managing a field excursion that will benefit everyone in the department. A year-long seminar-based class run by the students prepares them to visit the locality they have selected. Papers are selected, presented and discussed, followed by activities that educate the students on how to run a field-based project. During the field excursion, elected stops will be led and presented by individual students. The knowledge gained before and during the field trip will cumulate into a multi-media field guide that will be made available to the department and public following the trips conclusion.
A significant benefit of a department-wide field excursion is the interaction of students with scientists from various disciplines. Many earth scientists only carry out field work with specialists in their own field. The real discoveries in modern earth science occur when the different disciplines are part of a collective discourse. This trip will have scientists with different backgrounds observe the same outcrops; fostering fruitful discussion that results in the generation of new and unique questions. In addition, this trip may inspire fellowship among EEPS graduate students that will hopefully create life-long collaborations and a cohesive department.

General route starting in Albuquerque, New Mexico
This year, EEPS elected to utilize Mike Johnson’s gift to lead graduate students on a 7 day field expedition to observe some of the most diverse and economically important geologic terrains in the United States.
In early June of 2020, EEPS will travel through New Mexico, Colorado and Utah, which have easily accessible exposures of metamorphic, sedimentary, and igneous rocks. Starting from Albuquerque, New Mexico they will explore the Rio Grande Rift, the San Juan Volcanic field, and the well exposed Mezozoic stratigraphy on the Colorado Plateau. Observing these diverse geologic terrains will give EEPS graduate students a chance to see how their research interests dovetail with what they observe in nature and provide opportunities to create new ideas.
Pre-Trip planning seminars
Fall semester: The graduate student of the winning field trip proposal organizes a weekly reading group focusing on the regional geology of the four corners region and come up with potential stops.
Spring semester: The weekly reading group continues. Students pick the final outcrops that they would like to visit. Each student is assigned to be an expert on 1-3 stops. Before the field trip, each student will submit their description(s) of their stop for the field guide.
Spring 2020 Seminar Papers
Deposits related to subaerial volcanism
Analogues of epithermal gold-silver deposition in geothermal well scales
Influence of the Onion Creek salt diapir on the late Cenozoic history of Fisher Valley, southeastern Utah
Ichnofacies of an Ancient Erg: A Climatically Influenced Trace Fossil Association in the Jurassic Navajo Sandstone, Southern Utah, USA
Delamination and delamination magmatism
Continuing Colorado plateau uplift by delaminationstyle convective lithospheric downwelling
Progressive Construction of Laccolithic Intrusive Centers: Henry Mountains, Utah, U.S.A
Physical theory for the formation of Hoodoos
Tectonic regime controls clustering of deformation bands in porous sandstone
Vertebrate burrows in deposits of an eolian system, Lower Jurassic Navajo Sandstone, Moab, Utah, area, U.S.A.
Plio-Pleistocene pumice floods in the ancestral Rio Grande, southern Rio Grande rift, USA
Is the Valles caldera entering a new cycle of activity?
Fall 2019 Seminar Papers
Cenozoic Thermal, Mechanical and Tectonic Evolution of the Rio Grande Rift
Physical model for Cenozoic extension of North America
Geometry of propogating continental rifts
Middle Tertiary Volcanic Field in the Southern Rocky Mountains
On the Origin of Crystal-poor Rhyolites: Extracted from Batholithic Crystal Mushes
Pyroxenite xenoliths from the Rio Puerco volcanic fi eld, New Mexico: Melt metasomatism at the margin of the Rio Grande rift
Origin of the late Quaternary dune field of northeastern Colorado

Department of Earth, Environmental and Planetary Sciences
Rice University
MS-126
6100 Main Street
Houston, TX 77005 USA
Phone: 713.348.4880
Fax: 713.348.5214
Email: geol@rice.edu
Register a member of Rice Department of Earth, Environmental, and Planetary Sciences
Login to Rice Department of Earth, Environmental, and Planetary Sciences