Deep Subduction of Organic Carbon Helped Atmospheric Oxygen Rise

Study: Early organic carbon got deep burial in mantle

Petrology experiments support tectonic role in Earth’s ‘great oxidation event’

Rice University petrologists who recreated hot, high-pressure conditions from 60 miles below Earth’s surface have found a new clue about a crucial event in the planet’s deep past.

Earth's atmosphere, as seen in 2003 from the International Space Station

Earth’s atmosphere, as seen in 2003 from the International Space Station, hasn’t always contained large amounts of oxygen. Petrologists from Rice University and the Carnegie Institution recreated hot, high-pressure conditions from 60 miles below Earth’s surface in search of new clues about the “great oxidation event” that added large amounts of oxygen to the atmosphere around 2.4 billion years ago. (Photo courtesy of ISS Expedition 7 Crew, EOL, NASA)

Their study describes how fossilized carbon — the remains of Earth’s earliest single-celled creatures — could have been subsumed and locked deep in Earth’s interior starting around 2.4 billion years ago — a time when atmospheric oxygen rose dramatically. The paper appears online this week in the journal Nature Geoscience.

“It’s an interesting concept, but in order for complex life to evolve, the earliest form of life needed to be deeply buried in the planet’s mantle,” said Rajdeep Dasgupta, a professor of Earth science at Rice. “The mechanism for that burial comes in two parts. First, you need some form of plate tectonics, a mechanism to carry the carbon remains of early life-forms back into Earth. Second, you need the correct geochemistry so that organic carbon can be carried deeply into Earth’s interior and thereby removed from the surface environment for a long time.”

At issue is what caused the “great oxidation event,” a steep increase in atmospheric oxygen that is well-documented in countless ancient rocks. The event is so well-known to geologists that they often simply refer to it as the “GOE.” But despite this familiarity, there’s no scientific consensus about what caused the GOE. For example, scientists know Earth’s earliest known life, single-celled cyanobacteria, drew down carbon dioxide from the atmosphere and released oxygen. But the appearance of early life has been pushed further and further into the past with recent fossil discoveries, and scientists now know that cyanobacteria were prevalent at least 500 million years before the GOE.

Megan Duncan

Megan Duncan (Photo by Jeff Fitlow/Rice University)

“Cyanobacteria may have played a role, but the GOE was so dramatic — oxygen concentration increased as much as 10,000 times — that cyanobacteria by themselves could not account for it,” said lead co-author Megan Duncan, who conducted the research for her Ph.D. dissertation at Rice. “There also has to be a mechanism to remove a significant amount of reduced carbon from the biosphere, and thereby shift the relative concentration of oxygen within the system,” she said.

Removing carbon without removing oxygen requires special circumstances because the two elements are prone to bind with one another. They form one of the key components of the atmosphere — carbon dioxide — as well as all types of carbonate rocks.

Dasgupta and Duncan found that the chemical composition of the “silicate melt” — subducting crustal rock that melts and rises back to the surface through volcanic eruptions — plays a crucial role in determining whether fossilized organic carbon, or graphite, sinks into the mantle or rises back to the surface through volcanism.

Schematic depiction of the efficient deep subduction of organic carbon

This schematic depicts the efficient deep subduction of organic (reduced) carbon, a process that could have locked significant amounts of carbon in Earth’s mantle and resulted in a higher percentage of atmospheric oxygen. Based on new high-pressure, high-temperature experiments, Rice University petrologists argue that the long-term sequestration of organic carbon from this process began as early as 2.5 billion years ago and helped bring about a well-known buildup of oxygen in Earth’s atmosphere — the “Great Oxidation Event” — about 2.4 billion years ago. (Image courtesy of R. Dasgupta/Rice University)

Duncan, now a research scientist at the Carnegie Institution in Washington, D.C., said the study is the first to examine the graphite-carrying capacity of a type of melt known as rhyolite, which is commonly produced deep in the mantle and carries significant amounts of carbon to the volcanoes. She said the graphite-carrying capacity of rhyolitic rock is crucial because if graphite is prone to hitching a ride back to the surface via extraction of rhyolitic melt, it would not have been buried in sufficient quantities to account for the GOE.

“Silicate composition plays an important role,” she said. “Scientists have previously looked at carbon-carrying capacities in compositions that were much more magnesium-rich and silicon-poor. But the compositions of these rhyolitic melts are high in silicon and aluminum and have very little calcium, magnesium and iron. That matters because calcium and magnesium are cations, and they change the amount of carbon you can dissolve.”

Dasgupta and Duncan found that rhyolitic melts could dissolve very little graphite, even when very hot.

“That was one of our motivations,” said Dasgupta, professor of Earth science. “If subduction zones in the past were very hot and produced a substantial amount of melt, could they completely destabilize organic carbon and release it back to the surface?

“What we showed was that even at very, very high temperatures, not much of this graphitic carbon dissolves in the melt,” he said. “So even though the temperature is high and you produce a lot of melt, this organic carbon is not very soluble in that melt, and the carbon gets buried in the mantle as a result.

Rajdeep Dasgupta

Rajdeep Dasgupta (Photo by Jeff Fitlow/Rice University)

“What is neat is that with the onset and the expected tempo of crustal burial into the deep mantle starting just prior to the GOE, and with our experimental data on the efficiency of deep burial of reduced carbon, we could model the expected rise of atmospheric oxygen across the GOE,” Dasgupta said.

The research supports the findings of a 2016 paper by fellow Rice petrologist Cin-Ty Lee and colleagues that suggested that plate tectonics, continent formation and the appearance of early life were key factors in the development of an oxygen-rich atmosphere on Earth.

Duncan, who increasingly focuses on exoplanetary systems, said the research could provide important clues about what scientists should look for when evaluating which exoplanets could support life.

The research is supported by the National Science Foundation and the Deep Carbon Observatory.

About Jade Boyd

Jade Boyd is science editor and associate director of news and media relations in Rice University’s Office of Public Affairs.


Laurence Yeung wins 2016 F. W. Clarke award from the Geochemical Society

Yeung headshotClarke medal

Laurence Yeung, assistant professor of Earth Science, will be awarded the F. W. Clarke medal from the Geochemical Society at this year’s V. M. Goldschmidt meeting in Yokohama, Japan. The award is named after Frank Wigglesworth Clarke, who determined the composition of the Earth’s crust and is considered by many to be the father of Geochemistry. From the Geochemical society’s announcement:

The Clarke Award recognizes an early-career scientist for a single outstanding contribution to geochemistry or cosmochemistry published either as a single paper or a series of papers on a single topic. Prof. Yeung is recognized for developing, both experimentally and theoretically, a new clumped isotopologue system with applications to natural systems.

With Dr. Yeung’s award, the Department of Earth Science now has three F. W. Clarke medalists: Profs. Cin-Ty Lee (2009), Rajdeep Dasgupta (2011), and Laurence Yeung (2016). We are tied (with Caltech) for the most Clarke medalists in any department in the world. Here’s to many more!

Link to story on Rice News

Hydrous basalt–limestone interaction at crustal conditions: Implications for generation of ultracalcic melts and outflux of CO2 at volcanic arcs

New student paper out!  See Laura Carter’s paper on basalt-limestone interactions with implications for arc CO2 fluxes, published in Earth and Planetary Science Letters. [article]


High degassing rates for some volcanoes, typically in continental arcs, (e.g., Colli Albani Volcanic District, Etna, Vesuvius, Italy; Merapi, Indonesia; Popocatepetl, Mexico) are thought to be influenced by magma–carbonate interaction in the crust. In order to constrain the nature of reaction and extent of carbonate breakdown, we simulated basalt–limestone wall-rock interactions at 0.5–1.0 GPa, 1100–1200 °C using a piston cylinder and equal mass fractions of calcite (CaCO3) and a hydrous (∼4 wt.% H2O) basalt in a layered geometry contained in AuPd capsules. All experiments produce melt + fluid + calcite ± clinopyroxene ± plagioclase ± calcic-scapolite ± spinel. With increasing T, plagioclase is progressively replaced by scapolite, clinopyroxene becomes CaTs-rich, and fluid proportion, as inferred from vesicle population, increases. At 1.0 GPa, 1200 °C our hydrous basalt is superliquidus, whereas in the presence of calcite, the experiment produces calcite + clinopyroxene + scapolite + melt. With the consumption of calcite with increasing T and decreasing P, melt, on a volatile-free basis, becomes silica-poor (58.1 wt.% at 1.0 GPa, 1100 °C to 34.9 wt.% at 0.5 GPa, 1200 °C) and CaO-rich (6.7 wt.% at 1.0 GPa, 1100 °C to 43.7 wt.% at 0.5 GPa, 1200 °C), whereas Al2O3 drops (e.g., 19.7 at 1100 °C to 12.8 wt.% at 1200 °C at 1.0 GPa) as clinopyroxene becomes more CaTs-rich. High T or low P melt compositions are ‘ultracalcic,’ potentially presenting a new hypothesis for the origin of ultracalcic melt inclusions in arc lava olivines. Wall-rock calcite consumption is observed to increase with increasing T and decreasing P. At 0.5 GPa, our experiments yield carbonate assimilation from 21.6 to 47.6% between 1100 and 1200 °C. Using measured CO2 outflux rates for Mts. Vesuvius, Merapi, Etna and Popocatepetl over a T variation of 1100 to 1200 °C at 0.5 GPa, we calculate 6–92% of magmatic input estimates undergo this extent of assimilation, suggesting that up to ∼3% of the current global arc CO2 flux may be crustally derived. Application of the assimilation extent bracketed in this study to the estimated elevated number of carbonate-assimilating arc magmatic systems active during the late Cretaceous to early Paleogene suggests that magma-induced upper plate decarbonation alone had the potential to contribute up to 2.7×1014–5.6×1015 g/y CO2, assuming no dilution and complete gaseous release of all assimilated carbon. Using an estimated assimilation extent averaged from current systems gives a slightly lower though still significant value of ≤5.5×1014 g/y of excess CO2 being released into the atmosphere.