AAPG-RICE CANADIAN ROCKIES FIELD TRIP 2016

p4

The AAPG Canada Region welcomed Rice AAPG Student Chapter for a four day guided transect through the Canadian Rockies. This trip was supported in part by funds provided by SHELL.

Trip Leaders:

Dr. Clinton Tippett (Geoscience Leader), Dr. Kevin Root (Geoscience Leader) and Dr. Malcolm Ross (SHELL – Rice University)

Assistant trip leaders:

Lacey Pyle and Catherine Ross

Student Participants:

Alana Semple, Christopher Odezulu, Jingxuan Liu, Joyeeta Bhattacharya, Maryam Nasizadeh, Nancy Zhou, Wey Yi Foo, William Farrell,  Yue Yao and Zuyue Zhang

Day 1: Calgary to Lake Louise

Copithorne Ridge, McConnell Thrust at Mount Yamnuska, Lac des Arcs Region, Rundle Thrust Sheet Viewpoint (Harvey Heights), Grassi Lakes Devonian Section above Canmore, Kootenay-Fernie section, Mt. Norquay Overlook, Castle Mountain

IMG_1970

Leaders Clinton Tippett (R) and Kevin Root(L) explaining the regional geology of Jumping Pound Gas Field

The group at Grassi Lake

The group by the Grassi Lakes carbonates

The group looking at turbidites on a road cut section

The group looking at turbidites on a road cut section

13679991_10154973333043998_1386250187230286338_o

Alana is leaning on a fossilized log!

Day 2: Lake Louise to Fernie

Lake Louise, Cambrian Facies Change, Marble Canyon, Folds in the Cambrian Chancellor Formation, Redwall Thrust, Radium Hot Pool, Sinclair Canyon, Out-of-sequence Thrusts, Columbia River Overlook, Radium, Toby Formation, Windermere Lake Area,  Southern Rocky Mountain Trench, Fort Steele Area, Southern Rocky Mountain Trench, Elko Area

The tranquillity of Lake Louise in the morning

The tranquility of Lake Louise in the morning

A hike along the Marble Canyon offers a great view of sea green coloured glacial melt water streams

A hike along the Marble Canyon offers a great view of sea green-colored glacial melt water streams

 

 

 

 

 

 

 

 

 

 

 

8

Varied types of folds in the Cambrian Chancellor Formation

Enlarged view of fold in Chancellor formation

Enlarged view of fold in Chancellor formation

10

Kevin explaining the geology of Radium area while the whole group relaxes in lukewarm waters of the Radium hot water pool!

11

Clinton showing diamictites.

Day 3: Fernie to Waterton

Crowsnest Lake, Cardium Formation, Crowsnest Formation Volcanics, Frank Slide, Triangle Zone of the Outer Foothills

Picture1

Duplex in the Banff formation, highlighted in red colour outline

13

Crownsnest formation volcanics (A deer came here to pose as a scale for the geologists.)

 

 

 

 

 

 

 

 

 

 

 

 

IMG_2297

Canada’s deadliest rock slide known as Frank slide, devastated the town of Frank in 1903 when the overturned anticline made of carbonate rocks in the Turtle Mountain fell off probably due to extensive mining practices and alternate freeze-thaw of snow on the mountains which made incipient cracks propagate into vulnerable fractures and cause the mass wasting.

Day 4: Waterton to Calgary

Prince of Wales Hotel, Waterton Field, Triangle Zone structures in the Canyon of the Oldman River, Livingstone Gap, Okotoks “Big Rock” Erratic

16

St. Mary River formation dinosaur traces

Big Rock Erratic: The huge chunk of quartzite was transported by glacier in the Last Glacial maximum and is dissected longitudinally reason of which is still debated.

Big Rock Erratic: The huge chunk of quartzite was transported by glacier in the Last Glacial maximum and is dissected longitudinally, reason of which is still debated.

 

 

 

 

“End of the trip group photo” at the Big Rock Erratic From Left: Jingxuan Liu, Zuyue Zhang, Maryam Nasizadeh, Alana Semple, Catherine Ross, Joyeeta Bhattacharya, Nancy Zhou, Lacey Pyle, Wey Yi Foo, William Farrell, Christopher Odezulu, Clint Tipette, Yue Yao and Malcolm Ross. Behind the lens: Kevin Root

“End of the trip group photo” at the Big Rock Erratic

From Left: Jingxuan Liu, Zuyue Zhang, Maryam Nasizadeh, Alana Semple, Catherine Ross, Joyeeta Bhattacharya, Nancy Zhou, Lacey Pyle, Wey Yi Foo, William Farrell, Christopher Odezulu, Clint Tipette, Yue Yao and Malcolm Ross. Behind the lens: Kevin Root

Blog created by:Joyeeta Bhattacharya

ESCI 546 Basin Analysis: Field Trip to Ireland

Overview


ESCI 546 “Advance Topic in Basin Sedimentology and Stratigraphy ” participated in a field trip to County Clare, western Ireland, from May 2nd to May 12th, 2016. The class visited sea-cliff exposures of rocks found in the Western Irish Namurian Basin (WINB), which were deposited during the Upper Carboniferous (326 Ma – 317 Ma). The deposits represent a variety of sedimentary depositional environments, including fluvial-deltaic to deep water turbidites. The rocks were later obscured by fold-thrust related deformation associated with the Variscan (Hercynian) orogeny, brought on by rift-related deformation during the breakup of Pangaea. The WINB is an ideal location to evaluate the interconnectedness of the various sedimentary environments, in particular, linking the physical processes that shape the internal stratigraphy.

The first part of the class trip included a five day “basin overview” led by Professor Jim Best of the University of Illinois at Urbana–Champaign (UIUC), who has 30 years of experience working in the WINB. During this tour, students self-organized to develop research projects for the range of depositional environments. Students were then provided three days to work among the outcrops to pursue their respective projects. On the final day, these students led the class through the outcrops, presenting their specific findings.

Regional map of western Ireland (Lien et al., 2003; Kendall and Haughton, 2006)

 

Capture

Stratigraphic overview of the WINB (Tanner et al. 2011)

Participants


Professors: Jeffrey A. Nittrouer,  Jim Best (UIUC)

Post-doc: Hongbo Ma

Students: Andrew Moodie, Brandee Carlson, Sam Zapp, Simon Chan, Garrett Lynch, Brian Demet, Chenliang Wu, Pulkit Singh

Visiting Student: Matthew Czapiga (UIUC)

Teaching Assistant: Tian Dong

Day 1   Loop Head Cliffs: Ross Fm. (Deep Water Turbidite)


Cliff exposure of Ross Fm. at Loop Head Peninsula  (Photo Credit: Matthew Czapiga)

May 3rd

We arrived in Shannon, Ireland, on the morning of May 3rd. In the early afternoon, after settling into our rental home in Kilkee, we visited cliff exposures of the Ross Fm. near the Loop Head lighthouse. The Ross Fm. is a sandstone unit, interpreted as deep-water turbidite fan deposits. Among the lobes are a few channel features higher in the stratigraphic section. The Ross Fm. is the thickest near the Shannon Estuary (~380 m) and thins to the north, in the general direction of paleo flow.

_DSC1074

Ross Sandstone at the Bridge of Ross (Photo Credit: Matthew Czapiga)

 Day 2  Northern County Clare: Visean Fm. (Basement Limestone) and Clare Shale Fm.(Deep Water Shale)


May 4th

_DSC1051

Cliff exposure of Visean Limestone Burren Fm. near Galway Bay (Photo Credit: Matthew Czapiga)

We drove north for 2 hours from Kilkee to the south of Galway Bay at the northern end of County Clare. Here, we visited the Burren Fm., a Visean limestone unit that forms the basement of the WINB. This unit is interpreted to be a shallow-water carbonate deposit, likely associated with a shelf setting.  The unit contains variety of fossils, including rugosa corals and brachiopods.

 

 

 

IMG_0451

Clare Shale and Visean Limestone contact at St. Brendan’s Well (Photo Credit: Tian Dong)

 

 

Travelling to the south, we moved upsection to the “St. Brendan’s Well” outcrop to locate the contact between the Visean Limestone and the Clare Shale. The Clare Shale Fm. is the lowest unit of the WINB sedimentary fill, and consists of a deep marine black shale. At the contact of the Clare Shale and Visean Limestone is a phosphate rich bed, ~ 8 cm thick, interpreted to be a condensed section likely associated with an open marine environment, where sedimentation is extremely minimal.

 

 

 

 

 

 

Day 3    Point of Relief: Deep Water Deposit  (Ross Sandstone Fm.) and Slope Deposit (Gull Island Fm.)


May 5th

We visited the Bridge of Ross and the Ross Fm. to examine the sedimentary structures found within the turbidite deposits. One of the most famous structures here is the Ross Slide, a highly deformed, inter-bedded mudstone and sandstone unit, which contains various soft sediment deposition features, including sand volcanoes and syndepositional folds. The Ross Slide is more recently interpreted as a slump deposit, whereby external forces caused liquefaction of sand and mud and initiated motion that produced significant folding and deformation. The Ross Slump is very laterally extensive (10’s of kilometers long), and this significant size is considered to be associated with a seismic event as triggering the the deformation.

_DSC1066

Ross Slide near the Bridge of Ross (Photo Credit: Matthew Czapiga)

Moving up Section, we examined the contact between the Ross Fm. and the Gull Island Fm., identified by a thin layer of mud with a goniatite (ammonoid) band, which is likely associated with a condensed open-marine section.

The Gull Island Fm. is interpreted as a slope deposit, whereby numerous failures trigger mass transport of sediment that ultimately feed the Ross Fm. turbidite deposits. The Gull Island Fm. contains various styles of soft sediment deformation, including slides, slumps, growth faults, and mud volcanoes.

_DSC1099

Ross and Gull Island Contact near Point of Relief (Photo Credit: Matthew Czapiga)

At end of the day, we visited the Tullig Cyclothem, the formation atop the Gull Island. Here, this cyclothem represents alternating sequences of fluvial-delatic and near-shore, shallow marine deposits, indicated by a classic coarsening upward deltaic sequence of interfingering pro delta, interdistributary bay, and fluvial-deltaic deposits. The middle to upper Tullig Cyclothem is characterized by channels of various sizes, and the Upper Tullig sandstone possesses bedforms and terrestrial plant fossils, indicating a fully fluvial depositional setting.

_DSC1136

Cliff exposures of Tullig Cyclothem at Point of Relief (Photo Credit: Matthew Czapiga)

Day 4       Trusclieve: Fluvial-Deltaic Deposit (Tullig Cyclothem and Kilkee Cyclothem)


May 6th

We took a boat ride on the Shannon Estuary, in order to observe cliff exposures of the Middle to Upper Ross Fm., and the underlying Clare and and  Visean Limestone. The upper Ross Fm. contains numerous feeder channels that routed sediment to the fan lobe deposits of the Ross Fm.

L1050014

Upper Ross Formation (Photo Credit: Tian Dong)

L1050016

Large fold within the Ross Fm. (Photo Credit: Tian Dong)

 

 

 

 

 

 

 

 

 

 

 

 

 

Later, we drove to Trusklieve to visit the Tullig Cyclothem in detail, specifically, the changes in vertical stacking patterns. Stratigraphic Sequences of the Tullig Cyclothem at Trusklieve show that an overall coarsening upward trend is pervasive (as described above). Moving up section, there is an increase in the frequency of amalgamated channels bodies, which possess bedforms, barforms, and terrestrial plant fossils, all of which indicate a land-based fluvial-deltaic environment.

 

L1050045

Tullig Cyclothem at Trusklieve (Photo Credit: Tian Dong)

Overlaying this fluvial section is a thick transgressive mudstone that contains various types of marine fossils, including zoophycos, which is a trace fossil left behind by the movement of polychaete worms. Above this mudstone is a marine mud bed, rich with goniatites, and representing the final stage of the Tullig transgression. Overlying this is the Kilkee Cyclothem, which progrades overtop and marks of the onset of a new fluvial-deltaic progradation.

_DSC1201

Transgressive package within the Tullig Cyclothem overlain by the Kilkee Cyclothem (Photo Credit: Tian Dong)

 

Day 5       Killard: Fluvial-Deltaic Deposit (Tullig Cyclothem)


May 7th

We drove several kilometers north of Trusklieve to examine the Tullig Cyclothem at Killard Bay. We observed similar coarsening upward sand bodies, as well as sedimentary structures and plant fossils that are quite similar to those observed at Trusklieve. An interesting question arose regarding this outcrop: Why do the bedform foresets dip at such a shallow angle, much lower than angle of repose? Hongbo Ma is investigating this phenomenon, and has some interesting findings based on ongoing studies in the modern Huanghe River (China) which could be used to compare to the Tullig channel dunes.

IMG_0489

Foresets in Upper Tullig Cyclothem (Photo Credit: Tian Dong)

 

IMG_0474

Soft sedimentation deformation at Killard (Photo Credit: Tian Dong)

 

Day 6-8      Group Project 


May 8th – 10th

Students self-organized into four groups of two people each, and pursued independent research projects, conducted at various field sites for the range of depositional environments. On May 10th, each team presented the results of their individual projects to the class.  The following list describes the student groups and their respective project depositional environments:

Fluvial-deltaic (Trusklieve and Killard):                Brandee and Andrew

Pro-Delta/Shelf (Point of Relief and Killard):       Chen and Sam

Slope (Point of Relief):                                                Garrett and Brian

Turbidite (Bridge of Ross):                                         Pulkit and Simon

Day 9       Cliffs of Moher


May 11th

We visited the Cliffs of Moher on the northern end of County Clare. This location is distal part of the WINB, where it contains a condensed section of all the previously visited sedimentary formations. At the highest point of Cliff of Moher, stands the O’Brien’s Tower, an observation tower build by local landlord in the early 1800s. Standing by the tower, we had a spectacular view of the Loop Head peninsula and north Atlantic, which is a great way to conclude this wonderful trip.

L1050076

Cliff of Moher (Photo Credit: Tian Dong)

 

L1050086

O’Brien’s Tower at Cliff of Moher (Photo Credit: Tian Dong)

Earth Structure and Deformation: Field Trip 2016

It was a nice and sunny Saturday when we started our journey on I-10 going west of Houston. We crossed Pleistocene and thin Pliocene rocks until we were near the Little Low Miocene Hills of Columbus, a very small strip. Finally, we arrived at our first stop where lower Cretaceous rocks onlap onto basement rocks. We noticed that Oligocene rocks were missing.

 

Day 1:

Walnut Formation Road Cut (Stop 1)

Location N 030.29947 W 097.82767

Elevation: 297 m

At this stop, we saw Glenrose basement rock overlain by Walnut Formation (110 Ma). The lithology of the Walnut Formation is a lime mud marl (limestone), and the beds seen are horizontal and fissile. The beds contain fossils and some of the fossils found include the famous Devil’s toenail (exogyra), oyster, snails and warm burrows. The worm burrows are indicative of a depositional environment with ubiquitous bioturbation. Since it was quiet enough for worms to burrow and mud to be deposited, we speculated that the depositional environment was lagoonal. If this is the case, it could be an indicator of paleo sea level.
There is an enigma surrounding the Walnut formation. If it was formed close to sea level, how is it that the elevation is now 297 m today? The question of when and how the Llano Uplift (part of the Edwards Plateau) occurred is still a mystery in geology. Some researchers have pinned it to Oligocene time. As far as how it occurred, several theories exist: (1) magmatic underplating from ultramafic intrusions along the Balcones Escarpment; (2) a flexural response from forebulge to the coastal basin; and (3) Jurassic salt moving to the surface, causing Cretaceous rocks to slide and creating offset.

 

000

 

 

 

 

Transition from Glen Rose to Walnut Formation moving upwards. Glen Rose has harder, regular bedding, where Walnut has muddy Cretaceous limestone.

001

 

 

 

Close-up of the Walnut Formation. Contains visible shelled organisms and exhibits diffuse bedding.

 

 

 

Ellenberger Group, Honeycut Formation (Stop 2)

Location: N 030.553777 W 098.26020

Elevation: 246 m

The Honeycut Formation is Ordovician in age. About 100 m of limestone has been eroded here in comparison to the Walnut Formation, and this is reflective of the erosional window of the Llano Uplift. The formation is highly laminated and contains bacterial mats (stromatolites which grow on tidal flats). There might also be some stylolites although it is not certain. Barnett Shale, which is Mississippian-Devonian in age, can also be seen at this outcrop, but it is very thin.
In West Texas, the Ellenberger limestone is a major carbonates reservoir where it was exposed, karsted, faulted, and later sealed. The faults here are related to the Ouachita orogeny (which is younger than 300 Ma) and analogous to the Alleghanian orogeny of North America. Although the Honeycut marble is the downthrown side of the fault while the granite is upthrown side, the granite appears to be eroding faster than the marble. The result of this is a reverse topography instead of what we would expect from faulting.

 

002

 

 

 

Stromatolite in the Honeycut Formation.

 

 

 

 

Backbone Ridge (Stop 5)

Location: N 030.64519 W 098.41574

Elevation: 289 m

The Cambrian rocks are beneath the Town Mountain Granite, so we should have been in a graben (central downdrop block), but instead we were standing at a local high point. This is another instance of inverted topography due to erosion of the granite which has relatively low resistance. At this stop, we were standing on normal fault with two more faults running perpendicular in the Cambrian rocks before us. The Lion Mountain green sandstone across the road was formed by worm droppings in an anoxic environment, creating a mineral called glauconite. The sandstone is pelletal in texture and contains white lenses that we identified as trilobite hash. There are little muscovites on the surface of the trilobite deposits suggesting past metamorphism. Underlying the Lion Mountain is the upper Hickory Sandstone containing iron oolites, indicating a ferriferous depositional environment. Above the dark green sandstone we observed a color change to whitish-green and a compositional change to coarser grains containing more quartz. This is indicative of the depositional environment moving inland up the strata with the upper rock likely deposited in a shoreface to backshore setting. The whitish-green then transitions upward into a pink and green rock. The presence of herringbone bedding within this upper section signifies a tidal phase, perhaps an offshore to lagoonal environment. Overall the Lion Mountain Sandstone is less resistant than the overlying strata. Within the whole body we found an oxidized strike slip fault with mellow plunge in the slickenlines.

003

 

 

 

 

 

 

 

 

Predominately strike-slip fault (with some thrusting) in Lion Mountain Sandstone. Directionality indicated by slickenlines on red Fe-stained parts of glauconite on right side of fault.

 

 

004

Students looking at the Lion Mountain Sandstone.

 

Valley Spring Gneiss and Granite, Inks Lake State Park (Trip 6 PC Guide Stop 3)

Location: N 030.74855 W 098.35748

Elevation: 278 m

Here we saw heavily deformed quartzofeldspathic gneiss among other schists and gneiss. Up to four generations of folds and five associated foliations were able to be identified, all of which except the last were penetrative and seen through the whole area. Granitic dikes and intrusions were present and responsible for local metamorphism.

                                                                                005                                                                                                                                                                                                   

 

 

 

 

 

Granitic dike cutting through the Valley Spring Gneiss.

006

 

 

 

 

 

 

 

Distinct F3 fold in the Valley Spring Gneiss.

 

Valley Spring Gneiss (Trip 6 PC Guide Stop 2)

Location: N 030.75404 W 098.67634

Elevation: 281 m

For our last stop on Day 1, we examined a synform in the Valley Spring Gneiss by the Llano River. We measured the attitudes for several mineral foliations, plotted them on a stereonet, and attempted to match the data to our observations. At another spot by the river, we observed a Valley Spring pluton dated approximately 1250 Ma with a dynamothermal overprint dated 119 Ma. We noted that there was not much foliation in the country rock. The texture of the rock suggests that it was not highly metamorphosed.

 

007

 

 

 

 

 

 

 

Old Valley Spring pluton by the Llano River.

 

 

Day 2:

Highway 71 Outcrop (Mosher Day 1 Stop 4)

Location: N 030. 63010 W 098.52912

Elevation: 296 m

At this stop we observed the graphitic Packsaddle Schist. Lightened zones indicate the graphite was volatilized during intrusion, oxidizing the rock along the boundary and bleaching it. Overall the schist is blue in color with white folded quartz veins. It is fairly resistive and contains S1 and S2 folds. Little knots of quartz represent the old fold axis of the formation, and the initial folds appeared to be very ductile. We measured the trends and plunges of various foliations. The folds are typically isoclinal with some shearing, and the plunges of the fold axes range from steep to shallow. Within the schist we observed some vestige of the sedimentary protolith, a dark shale stacked atop a light sand. We noted sheaf folds and contemporaneous multi-directional folding, unique kinematic indicators for shear. The timing of the main assembly of the schist dates to 1140 Ma, predating the intrusion of the Town Mountain Granite. These schists are roughly the same grade as the gneiss we saw the previous day; both were metamorphosed at the amphibolite facies.

Some trends and plunges of fold axes:

  1. N50ºW, 43º
  2. N20ºW, 34º
  3. N40ºW, 15º
  4. N55ºW, 31º
  5. N15ºW, 39º
  6. N60ºW, 12º

 

008

 

 

 

 

Packsaddle Schist containing graphitic layers (dark banding) and folded quartz veins (white).

 

 

Cordierite (Added Stop)

Location: N 030.53540 W 098.44107

Elevation: 282 m

The next roadcut we stopped at was notable because of the presence of cement-like cordierite nodules which statically overprint the rock’s foliation. Cordierite is characteristic of high temperature, low pressure contact metamorphism associated with later stage plutonism. It contains no clear crystal structure and is only visible in thin section. Since the cordierite overprints foliation but exhibits none itself, we know that this stage of plutonism postdates folding. The Packsaddle rock here is more schist-like than what we saw at the last stop; the protolith is less obvious.

009

 

 

 

 

Packsaddle Schist with cordierite indicated by the weathering pattern. The cordierite is more resistant than the schist.

 

 

White Creek Ford (Mosher Day 1 Optional Stop 3)

Location: N 030.45692 W 098.482931

Elevation: 255 m

At this stop, we had an opportunity to see a rock specific to Texas, llanite. Llanite typically has blue quartz phenocrysts and K-feldspar. We saw some of these diagnostic characterics in the rocks surrounding the llanite dike that cut through the area. This dike is dated at 1098 Ma and indicative of late-stage rhyolitic igneous activity. Due to the lack of metamorphic overprint, the area is estimated to be at least 20 million years younger than the Town Mountain Granite not far from there. Further, the surrounding rocks had an aphanitic texture due to being injected into the mix at a shallower depth. They had to formed near the surface to avoid crystal growth and develop this texture.

An interesting feature we observed in this area included veins that were folded. First, in order for the veins to be formed, the rocks had to exhibit brittle behavior by cracking, and then later on exhibit ductile behavior for the veins to then be folded. This brought up the transition between brittle and ductile behavior which can occur due to changes in temperature, overburden pressure, or strain rate. The boudinage of the veins also indicated flow after formation. We also saw some crenulation folding that indicates a later extensional event due to its lack of offset from the main formation.

010

 

 

 

 

 

Classic “boudinage” feature.

 

 

 

Sandy Creek Shear Zone (Mosher Day 1 Stop 3a)

Location: N 030.54169 W 098.56100

Elevation: 292 m

The Sandy Creek Shear Zone is home to unique rocks that were crushed at high pressure and low temperature. We inferred these conditions from the crushed rock grains that lack evidence of recrystallization. At this stop we could also see another rock very specific to Texas, the Town Mountain Granite. This felsic granite appears to have orthoclase, hornblende, K-feldspar, quartz, and mica. The granite owes its pink color to abundant K-spar. In some places, the rock looks very “beat up” in that it has discrete fractures and seems to have undergone violent deformation at temperatures much lower than the solidus of the rock. Very little of the protolith was left untouched. The granite has been sheared but not recrystallized due to its location at shallow depths in the crust.

This formation brought up the brittle vs. ductile deformation question again when we observed that the sheared granite was brecciated to a fine-grained texture. Does the cataclastic but cohesive nature of the rock mean that there was some sort of cataclastic flow? This formation was a prime example of the blurred and ill-defined boundary between brittle and ductile deformation and could perhaps represent some sort of boundary condition between these two categories. The fact that there are mylonites half a kilometer down the road from this formation and its relative location indicates that the Sandy Creek Shear Zone is a point of contact between the Coal Creek and Packsaddle domains.

011

 

 

 

 

 

 

 

Brecciated sheared granite exhibiting cataclastic flow.

 

 

 

Augen Gneiss (Mosher Day 1 Stop 3b)

(Approximate)

Location: N 030.54169 W 098.56100

Elevation: 292 m

The gneiss here is similar in lithology to the rock at the Sandy Creek Shear Zone. Unlike the previous stop, this rock has been recrystallized after flowing. High-temperature ductile flow and partial melting occurred. This outcrop is a mylonite, meaning that grain size was reduced by plastic deformation during recrystallization. Minerals more resistant to grain size reduction, such as orthoclase feldspar, were rolled during deformation, resulting in clear mineral lineations and classic augen gneiss eye-like feldspar features. These rocks were clearly hotter than at the previous site, yet sit topographically higher, indicating that they likely did not undergo contemporaneous deformation.

012

 

 

 

 

 

 

Augen gneiss outcrop with mineral lineations lying on a foliation plane.

 

 

 

 

Red Mountain Ranch (Mosher Day 1 Stop 3c)

Location: N 030.51822 W 098.55237

Elevation: 312 m

Here the cataclastic flow and mylonite from the previous two stops (4 and 5 respectively) are interwoven. This leads us to believe that the two different flow features at their respective sites must represent the early and late stage of the same shear zone. Additionally, this locality is near the transition into the Packsaddle Schist, sitting at the base of the Coal Creek domain.

013

 

 

 

 

 

 

 

Interwoven cataclastic flow and mylonite.

 

 

 

Serpentinite Quarry (Mosher Day 1 Stop 2)

Location: N 030.47915 W 098. 63175

Elevation: 332 m

The serpentinite seen at the quarry here is a 6 km long section of the Coal Creek Domain. Derived from ultramafic, low crustal rocks, the serpentinite records a complex history of multiple instances of metamorphism, serpentinization, and deformation. It is thought that the serpentinite was deposited originally as a olivine-rich harzburgite and was subsequently serpentinized during tectonic emplacement. Following emplacement, the unit underwent regional deformation and metamorphism during which it was de-serpentinized. Finally, as granites were emplaced in the area, associated metamorphism anthophyllite grew and, as temperatures fell, serpentinization happened again due to hot water from the granite.

014

 

 

 

 

 

Serpentinite quarry at the final stop.

ESCI 322 Field Trip: Mysterious Visitors from the Deep

Pic1

Photo credit: Hehe Jiang

This blog describes the 3-day field trip that the Fall 2015 ESCI 322 class took to northern California with Professors Cin-Ty Lee & Rajdeep Dasgupta and TA Laura Carter, as told by the undergraduate students: Sofia Avendano, Anthony Foster, Alexandra Homes, Garrett Lynch, Oliver Lucier, Ian Mellor-Crummey, Leila Wahab, Shannon Wang, and Sam Zapp.

Day 1:

Marin Headlands (chert):

Pic2

Garrett Lynch in front of deformed cherts

This site overlooked San Francisco Bay directly across the Golden Gate Bridge. During the Jurassic period, following Pangaea, the Farallon plate subducted underneath the western North American plate.

At this stop we saw silica-rich cherts on top of ancient oceanic crust. The cherts were once laminated sedimentary deposits formed from diatoms and during subduction were scraped off as part of the accretionary prism. These specific cherts formed near the equator, probably during the Jurassic era. In composition, these cherts are 99% silica, but also contain some iron and manganese. This composition arose as iron and manganese were dispelled from the mid-oceanic ridges and deposited within the silicic ooze that becomes chert. We also noticed fractures filled with quartz in the form of white veins. Over to the right we saw darker, older, green bands, which had not been oxidized.

Marin Headlands (pillow basalts):

Pic3

Students Oliver Lucier and Sam Zapp looking at a pillow basalt outcrop with Garrett Lynch and Alexandra Holmes looking on from above and TA Laura Carter from below.

The pillow basalts here formed from magma that upwelled due to the divergent boundary at the mid-ocean ridge and was erupted underwater. Zoned phenocrysts of plagioclase feldspar were visible, indicating that they grew intrusively before eruption. The surrounding fine grained matrix was extruded on the seafloor where it cooled quickly. The edge of each pillow featured a glassy rind where the surface of the lava body cooled even quicker with direct contact with the water. Layers of chert were deposited on top of these pillows in a marine setting.

Pic5

Professor Dasgupta discussing pillow basalts with the students

 

 

 

 

 

 

 

 

Tiburon Peninsula (Eclogite, blueschist, and peridotite, boulder outcrops):

Pic6

Eclogite. Photo credit: Prof Cin-Ty Lee

Here we saw a number of boulder outcrops. Eclogite needs high pressure and high temperature conditions to form, so its presence was indicative of subduction zone setting. Chemically, it is very similar to the pillow basalts we saw earlier at the Marin Headlands, suggesting this may be the protolith. However, the eclogite samples we saw were also enriched in sodium, probably from hydrothermal processes, giving a special form of pyroxene: jadeite. In eclogite, the aluminum in the protolith plagioclase is now held in garnet. As it moved back up through the crust, some of the eclogite retrograded into blueschist, greenschist and amphibolite. The heterogeneity of the metamorphic grade may have been caused by uneven distribution of fluids. The kinetics of retrograde metamorphism can be slow, but the presence of fluids makes retrograde metamorphism occur faster.

 

Pic7

Students looking at a peridotite xenolith

 

The last outcrop we saw here was composed of peridotite. It contained orthopyroxene and olivine, so it would be classified as harzburgite. Peridotites with a much greater amount of orthopyroxene are lherzolite. These peridotite xenoliths had a slightly brown / tan coloring due to the weathering at the Earth’s surface. We also saw some serpentinite—altered peridotite—in the area.

 

 

 

Bolinas Lagoon (San Andreas fault, SEALS!):

We observed a rookery of seals accompanied by a lone sea lion as if he meant, through his presence, to elicit an ironical play upon a Danish children’s story. Abreast of these seals, two shovelers swam, feeding, and one merganser swooped through, low, tantalizing the water.

Point Reyes Visitor Center / Earthquake Museum:

Here we did a short nature walk travelling along the path of the San Andreas fault. We saw a fence that was displaced several feet due to previous movement along the fault, which is evidence of an ongoing right lateral strike slip fault.

The beach, the cliffs:

Pic8

Students looking at an unconformity on the beach at Point Reyes. Photo credit: Laura Carter

Along Point Reyes on the Pacific Ocean there was a series of cliffs with igneous outcrops that were the roots of a magma chamber from the Cretaceous next to marine sediments from the Miocene, representing a large unconformity. Here, we could see cross cutting relations in the igneous outcrops where magmas of different compositions interacted. The parental magmas were more basaltic, while the more felsic magmas were much more evolved. The intruding felsic magmas were much more viscous, so they mixed in some places but stayed clearly separate in others, and then froze in place. Mixing of the magmas indicated that the surrounding rock was still magmatic mush when they mingled.

Sharper boundaries between two magmas is also visible. This was likely due to the fact that basalt has a higher melting point, so when it cooled, it contracted and pulled some of the surrounding liquid in. These intrusions occurred further inland from the subduction zone, around 10 km below the surface.

Day 2:

Sedimentary Road Cuts, Ione Formation:

In the foothills of the Sierra Nevada, we saw an outcrop on the exposed shoulder of a highway. Sediments had been collected from the Sierra Nevadas and compacted into layers. The layers originated from granodiorite which lost much of its magnesium and iron, leaving behind what became predominantly kaolinite (Al2SiO5). The lower layers of laminated deltaic sediment gave way to cross-bedding features as a fluvial system moved through the area. At the edges of the formation, there was evidence of soft sediment deformation.

Silver Lake:

We also stopped at Silver Lake for lunch. Beside the lake there were these interesting boulders which appeared to contain clasts of petrified wood. Across the lake we saw large lava flows of andesitic magma, now part of an imposing mountainside.

Pic9

Andesitic lava flows overlooking Silver Lake. Photo credit: Prof Cin-Ty Lee

Mono Lake:

The edge of Mono Lake contains massive collections of tufa deposited in towers. We learned that these tufa deposits are a result of the very alkaline water from the lake mixing with calcium rich spring water from the Sierras, which precipitates calcium carbonate (CaCO3). The tufa deposits become visible and form large columns due to the water level of Mono Lake lowering over time. In the past, the springs feeding Mono Lake were drained to provide water for places like Los Angeles and other urban areas, which made more and more of the tufa deposits visible. Only in recent years has this been slowed and Mono Lake protected.

Pic10

Tufa towers at Mono Lake. Photo credit: Ian Mellor-Crummey

Day 3:

Long Valley Caldera:

The Long Valley Caldera is in the Basin and Range region, which underwent extension. The Caldera was active 2 million years ago, but the last eruption occurred 700,000 years ago and erupted 700,000 m3 of rhyolite. The eruption style was Plinian, which is very explosive, caused by magma fragmentation, and characterized by fine ash. The ash of the eruption spread throughout the western US. There were also resurgent domes with the same magma composition, but with effusive style eruptions since the magmas had already been degassed.

The youngest lava flows were 7,000 years old.  Under the Basin and Range extension, decompression allows the mantle to cross the solidus, which leads to alkalic basaltic magmatism. Basalts that re-melt the crust fractionate and form rhyolites, so there are both extremes here: basalts and rhyolites. It is still unclear how basalts skip to rhyolites with no intermediate composition.

Pic11

Glacial moraine in front of the Sierra Nevadas on the edge of Long Valley Caldera

The actual magma body was 10 km below the surface. The magma body builds up pressure, creating fractures, and, when the pressure exceeds the yield stress of the rock above, the system evacuates and the roof collapses. This has left a low, flat ~10 x 20 km area. Fumaroles, where magmatic gases were still escaping due to residual heat, were also visible.

Around the caldera, there were also moraines, large sediment mounds moved by glaciation, visible along the outskirts in front of the Sierras.

Pic14

Long Valley ignimbrite deposit at Owen’s Gorge. Photo credit: Prof Cin-Ty Lee

Owen’s Gorge:

Pic12

Long Valley ignimbrite containing pink pumice and granitic lithics

At the base of the gorge, we saw evidence of a huge rhyolitic ignimbrite, which must have erupted over an incredibly short period of time (estimated at around 6 days). There were three different layers denoting sequential eruptions. The lowest layer was more porous, with many lateral fractures and no evidence of compaction, which indicates that the lowest layer cooled before the weight of the next eruption could deform it. The texture of this tuff was friable, easily breakable, and it was more silicic than the upper layers. The first layer was probably an initial pulse of small eruptions right before the large eruption. Weak precursor eruptions tend to have ashfall rates slower than cooling rates.
The middle layer had a very clear fabric with small pumice ejecta elongated and oriented in the same direction, which shows that the layer was compacted. Thus it cooled slower than the layer below. The strain of the rock can be found from the aspect ratio of the elongated clasts, perpendicular to the bedding. This layer was welded ignimbrite, which contained fiamme, and was formed under high temperature and pressure. Jointing occurred after cooling due to contraction.

Pic13

Long Valley ignimbrite containing pink pumice and granitic lithics

 

The upper layer was mostly ash with pre-existing metamorphic, Paleozoic clasts caught in the ash (lithics). There were also pink pumice clasts that also have an individual fabric, which probably came from a different eruption, and had elongated vesicles caused by compaction. There was no larger scale fabric because there was not enough overpressure to deform the material, so the last eruption must have cooled quickly.

 

 

 

 

Panum Crater:

Pic15

Flow textures in banded obsidian layers

Panum Crater is what remains of a rhyolitic plug-dome volcano. Volcanic eruptions in this area began around 40,000 years ago. Panum Crater itself is approximately dated at 650 years old and is the youngest in the area. The explosion occurred as a magma bubble heated the water table into instant, high-pressure steam. Pumice was the first to be expelled from the volcano, and deposited around the outside of the crater. Following, breccia formed a dome over the crater, followed by lava flows that cooled to obsidian, which dominate the landscape.

Pic16

Vesicles in the pumice at Panum Crater. Car keys for scale. Photo credit: Prof Raj Dasgupta

Pic17

Highly zoomed image of the vesicle walls in the Panum Crater flows. Photo credit: Prof Cin-Ty Lee

The rhyolitic eruptions in the crater produced very silicic lava (roughly 76% SiO2), which is highly viscous and created the two main types of rock we saw: pumice and obsidian. The pumice was very low in density and highly vesicular. The vesicles formed from trapped air bubbles, indicating that the lava solidified quickly. Obsidian had little to no bubbles, but is the same composition as pumice. The obsidian cools quickly forming a glass, evidenced by the black rock’s conchoidal fracturing we saw.

A curious sample of rock we found looked like obsidian but had what looked like mud cracks on its surface. This was actually a breadcrust bomb formed from molten lava chunks flung into the air. The outer surface cooled rapidly, but the inside was still molten, so the gases inside continued expanding. This cracked the surface of the rock, causing it to look like the crust of a bread loaf.

Geologically speaking, obsidian never lasts very long. Devitrification causes glass to be more like rock and less like glass, so It is difficult to find glassy obsidian older than 10 thousand years old. The more vesicular the obsidian is, the faster the rate of devitrification since water gets in the vesicles. Thus, the rock samples at Panum were much younger than the samples at other formations we studied.

Basaltic Phreatic Deposit:

Pic18

Deformation and bedded phreatic ash deposits with Alexandra Homes for scale

On our way from Panum Crater, we stopped to examine an omega-shaped formation on the side of the road. Upon close inspection, we found the rock to be very fine-grained and soft, with cross-bedding evident on the folds. This was formed when a basaltic flow erupted underwater. When basalt hits groundwater, it fragments and becomes very, very fine-grained, creating the soft texture that we observed instead of the texture we saw in previous basalt deposits. The deformation is very similar to soft-sediment deformation, and most likely occurred when the rock was still warm and ductile. Cross-bedding was likely a result of basaltic ash settling in bodies of water nearby, creating the sloped deformation, and cross-bedding typical of river systems.

Cascades Field Trip: A Volcanic Blast!

Sept 30th: Dr. Helge Gonnermann’s Volcanic, Magmatic, and Hydrothermal Processes class set off dark and early Wednesday morning from Houston to the Cascades of California, Oregon, and Washington. We ventured across this varied volcanic terrain interpreting and learning about local and regional geologic events. The Cascades are an active continental volcanic arc resulting from the subduction of the Farallon plate beneath North America. Our first day consisted mostly of driving from Portland to Mt. Shasta and setting up at our lodging, a sweet house called Falconhurst (I still can’t get over the Bronte-ness of that name).

Oct 1st: Thursday, we drove through Mt. Shasta’s expansive debris flow deposits; these volcanic remains used to be mapped as glacial due to their poor sorting and extensive coverage. This is the largest subaerial debris flow on earth with an expanse of 450 km2. The huge hills we saw at every roadside stop were bits of ancestral Mt. Shasta’s flanks, deposited during the landslide 300,000-360,000 years ago.

Mt. Shasta and hummocks, pieces of its ancestral edifice deposited during a landslide.

 

Helge lectures on Mt. Shasta and debris flows

After dinner, several trip members were feeling peaky, so I made some medicinal grade ginger honey lemon maple tea, which was said to have “quite a kick”, and to be “reviving” (kind euphemisms for how spicy it was). The official recipe is as follows, but may be adjusted to taste.

Water                      1500 mL
Peeled ginger        150 g
Lemons                   2
Honey                    45 mL
Maple syrup         45 mL

Crush ginger and boil for 20 minutes. Squeeze lemons and strain into a jug. Add honey and syrup to your liking. (Personal notes: more ginger and longer boiling time results in a stronger, spicier brew.)

Nightly discussion featured vibrant political debate. Dr. Thomas Giachetti, who was Helge’s post-doc at Rice and is now a professor at the University of Oregon, joined us for dinner.

Oct 2nd: I awoke Friday morning to the dulcet tones of the smoke alarm wailing as the breakfast bacon burned. If you can’t handle thermodynamics, stay out of the kitchen! As we embarked, Sriparna noticed that every person in our car was from a different country (India, China, Iran, France, Brazil, USA), which I think is unique almost anywhere.

We hiked up Mount Lassen at Lassen Volcanic National Park. Lassen Peak is a dacitic dome, with pyroclastic dacite deposits containing phenocrysts and mafic enclaves, and dacitic pumice away from the peak. From the top, you can see Mount Shasta and the U shaped valleys carved out by glaciers in the last ice age.

View from Lassen Peak with Mt. Shasta in the background. Photo credit Thomas Giachetti.

View from Lassen Peak with Mt. Shasta in the background. Photo credit Thomas Giachetti.

Andesitic enclave within dacitic matrix at Lassen Peak

Andesitic enclave within dacitic matrix at Lassen Peak

We continued on to an a’a flow! I could hear the stratification of bubbles within the solidified flow as we trod over it, from the deep clunk of fragments of the dense inner core to the high-pitched glassy crunch of the sharp and vesicular upper crust. The flow had angular shards, round bubbly blobs, and solid dark fragments with visible feldspar phenocrysts.

At 8:15 pm we pulled the cars onto a side road on the way back to Mt. Shasta in the pitch dark to see the stars. The Milky Way was a full, bright arc directly above us, all the way across the sky. Satellites and shooting stars burned tiny white trails through the dark velvety firmament. I made a wish. It seemed impossible to take pictures of the sky, and we all decided it was best to experience the moment without needing to take it back home to show anyone else.

Oct 3rd: Our first stop Saturday was a basaltic pahoehoe and a’a lava flow, featuring a network of lava tubes. Flow direction was evident in the ropy pahoehoe sections by concentric surface flow features. Across the road was a scoria deposit; its clasts had smaller vesicles on the outside, smoothed from air fall, while their insides had larger bubbles where bubbles had enough time to coalesce.

Scoria airfall clast. Note the small vesicles on the outside (from airfall smoothing) and the larger ones inside (due to bubble consolidation).

Scoria airfall clast. Note the small vesicles on the outside (from airfall smoothing) and the larger ones inside (due to bubble consolidation).

We ate lunch at one of the highest points in the Medicine Lake volcanic area, with a great view of Little Glass Mountain (which is not so little) and Mt. Shasta’s head in the clouds. LGM is an effusive (non-explosive volcanic) obsidian rhyolite flow from 1000-1100 years ago. It is pancake-shaped with steep sides and a small dome in the middle near the vent.

Little Glass Mountain . Mt. Shasta in the clouds in the background. Photo credit: Thomas Giachetti.

Little Glass Mountain . Mt. Shasta in the clouds in the background. Photo credit: Thomas Giachetti.

Our next stop was Big Glass Mountain, another obsidian dome featuring glossy black volcanic glass banded with reticulite (a frothy, lace-like obsidian glass) in complex folds and beautiful flows. The banded textures are thought to result from magma exsolving dissolved gases; during eruption the shearing motion and pressure causes concentration of the gas in some layers but not others, or, alternately, shearing causes volatile exsolution and concentration. It was impossible to take enough pictures. We found beautiful folds that looked almost like fabric, and red layers intermingled with black obsidian. We discussed whether the reddish colors are iron oxidation, sericite from plagioclase microlite alteration, or some other alteration product.

Exsolution bubbles and textures at Big Glass Mountain, CA

Exsolution bubbles and textures at Big Glass Mountain, CA. Photo credit: Thomas Giachetti.

Josh with obsidian
My carmates were exceedingly kind about my eclectic music taste, with only minimal teasing about how ridiculously miscellaneous it is.

Oct 4th: Sunday morning we drove up to Portland via the magnificent volcanic Crater Lake and Mt. Mazama. The ash flow tuffs at the bottom of Mt. Mazama’s flanks are from the climactic eruption; their composition changes stratigraphically, indicating compositional changes of the magma chamber from which they erupted. This climactic event produced 40 times the eruptive volume of Mt. St. Helens. We estimated that the lake in the caldera could fit about 45 Rice campuses on its surface.

The layered flows on the cusp of the crater tell stories of the cataclysmic eruption. A red, weathered dacite lava flow on bottom is overlain by an orangey layered welded tuff flow, with a white pumice air fall deposit on top. Volcanic glass is not stable at atmosphere temperature and pressure, so it has begun to devitrify, crystallizing into spherulites over time.

Layered flow deposits on the rim of the Mazama caldera. Photo credit: Thomas Giachetti

Layered flow deposits on the rim of the Mazama caldera. Photo credit: Thomas Giachetti.

Volcanic glass alteration. Photo credit: Thomas Giachetti

Volcanic glass devitrification (spherulites). Photo credit: Thomas Giachetti.

Today in the car, while sharing music, we learned that the word ‘zindagi’ means life in both Hindi (जिंदगी) and Persian (زندگی). Persia and India have previously shared a border and continue to share culture, which persists in the language. Further north we began to see the Columbia River Flood Basalts, thick and hilly due to erosion, and golden from the grain fields covering each surface.

Columbia River Flood Basalts, eroded and with a splash of alpenglow.

Columbia River Flood Basalts, eroded and with a splash of alpenglow.

Oct 5th: Monday we had breakfast on the road; Helge told us stories of growing up on a farm in Germany with his favorite dairy calf, Sputnik.

We had uncommonly clear weather for our visit to Mount St. Helens. Small rock falls in the crater released bright dust clouds visible from kilometers away. Dr. Mike Poland, geophysical researcher for the USGS and expert on remote deformation measurement, was our guide. Mt. St. Helens is a member of the Cascades, famous for its catastrophic 1980 eruption. A cryptodome of pressurized magma began to build, pushing up the rock above it. When the rock above became gravitationally unstable, it fell, depressurizing the magma and causing the eruption and pyroclastic surge. All was quiet until 2004-2008 when a spine of hot crystalline rock, called the “whale back,” emerged within the crater.

As Dr. Poland discussed the things we can and cannot explain about eruptions, I’m struck again by a recurring thought of how young geology is as a science. People have been observing natural phenomena for millennia, but really understanding what they mean is an art. Seeing eruptive phenomena in person clarifies processes that are otherwise obfuscated by time or preservation bias. One can piece together that hummocks downhill of Mt. Shasta are pieces of the edifice, but until you see Mt. St. Helens erupt and move material in the same way, you can only guess. Geologists have time working both for and against us; eons are preserved in the rock record, but we only have our own perceptions, experiences, and conceptual limitations to guide us.

Mt. St. Helens. Slight dust visible at the top of MSH from gravitationally unstable rockfall.

Mt. St. Helens. Slight dust visible at the top of MSH from gravitationally unstable rockfall.

Our group in front of Mt. St. Helens with Dr. Mike Poland, who was kind enough to guide us. Photo credit: Thomas Giachetti.

I get the sense that losing volcanologists to volcanoes still stings. The way Mike and Helge reminisced about Dr. David Johnston, a geologist who died in the 1980 eruption, and Gerry Martin, the radio operator on the ridge behind him, there was a persistence of loss, and a solemnity underlying the oft-retold stories. Volcanology is scientifically fascinating, which draws us to it, but its dangers must be taken seriously. Sometimes curiosity comes at a price.

Thanks so much for a fantastic day, Mike!

Thanks so much for a fantastic day, Mike!

Monday night we ate at Beaches, a beach-themed (not Bette Midler themed?!) restaurant on the water in Portland. Our waitress was sweet and bubbly. At the end of our meal, she gave us saltwater taffy, and handed us packages of stick-on mustaches, telling us to get crazy and have fun. We took a group photo wearing them, and I think we all looked very distinguished.

Distinguished and also possessed. You CAN have it all! Photo credit: Julin Zhang

Distinguished and also possessed. You CAN have it all! Photo credit: Julin Zhang

Oct 6th: Tuesday morning we left the house at 4 am to get to the airport. When we all arrived home and unpacked, the TSA had searched each of our bags. I guess there’s something suspicious about carrying home pounds and pounds of rocks as souvenirs? This trip greatly expanded my understanding of volcanic processes, and was a wonderful experience overall.

Cambrian Stromatolites in Central Texas – video!

Watch Andre Droxler and his students talk about their research on Cambrian stromatolites out in Central Texas!

ESCI 322 – Going Across Southern California

Mafic enclaves in the Bernasconi Hills Pluton in southern California. Emily Pain for scale.

Mafic enclaves in the Bernasconi Hills Pluton in southern California. Emily Paine for scale.

Students in 322 go on a geology trip across southern California led by their professor Cin-Ty Lee and graduate student Hehe Jiang.  This is a mid-term field trip that the department has used to give a students a chance to apply some of their classroom knowledge to the field.  When it comes to looking at rocks and minerals, there is nothing better than going to the field where one has context.  It makes learning about rocks much more meaningful and more memorable. 

So this year, the class did a transect across southern California.  We arrived Friday afternoon in Ontario, California.  Our first stop was in the northern Peninsular Ranges Batholith, part of a continental volcanic arc that extended from Mexico all the way up through Canada during the Cretaceous.  This volcanic arc would form the backbone for much of our trip, so-to-speak.  We visited the Bernasconi Hills pluton, where we examined outcrops showing extensive mafic-felsic mingling in the form of mafic xenolith swarms and highly attenuated schlieren.  We then made our way across the San Jacinto Valley, a late Miocene-Pliocene graben formed by extension in the vicinity of the San Jacinto Fault, a splay of the San Andreas Fault. Around us, rising above the valley floor were large knobs of Cretaceous granitoids.  We made our way down to Green Acres, where we had a chance to examine olivine-gabbros, examples of cumulates in a shallow mafic magma chamber. 

We found ourselves the next morning in San Diego.  After a quick breakfast at McDonald’s, we headed out to Point Loma to examine the Point Loma and Cabrillo formations.  We picked the perfect place to look at these outcrops because we were right along the ocean, with waves crashing, sea gulls squawking, pelicans diving and the cool breeze blowing against us.  These are late Cretaceous sediments. We examined them under our hand lens and discovered that they consisted of quartz, feldspars, and lots of fresh biotite and hornblende. Normally, biotite and hornblende don’t last long in the weathering regime, so their presence suggests a very juvenile sediment.  These sediments, it turns out, were being shed off the Cretaceous volcanic arc, most likely while the arc was still active, given its age.  Yesterday, we were looking at the eroded plutons and today, we are seeing their eroded tops in an ancient basin!

Cretaceous fore-arc sediments at Point Loma, California.

Cretaceous fore-arc sediments at Point Loma, California.

It was hard to pry ourselves from the ocean, but we had to because we a schedule to stay on.  Our goal was to head east.  On the way, we stopped by some Eocene forearc sediments exposed in a roadcut. These sediments were completely devoid of biotite and hornblende and were formed by the erosion of deeply weathered surfaces of the batholith, well after magmatism and mountain building had ended.  A few of the students found some shell fossils in the sediments, indicating a shallow marine origin.  After our brief foray into the Eocene, our drive along I-8 took us back into the Cretaceous plutons.  We turned north to Cuyama Valley, where we looked at more olivine-gabbro cumulates along the shore of Lake Cuyama. But our excitement quickly turned to a large area of exposed migmatites.  Here, the metasediments had been metamorphosed, deformed, and recrystallized to such a degree that they looked like a gneiss and in some cases looked like a highly foliated granite, but the tell-tale signs of migmatization were the abundant quartz- and feldspar-rich veins and dikes that appear to have formed during ductile deformation.  This was the birth place of some of the granites that contributed to the Cretaceous batholith.  There were a lot of mortar holes on the outcrop, left behind by Native Americans. How nice it must have been to grind food on migmatites!

Lunch

Lunch

Our next stop on Saturday was high up in the San Jacinto Mountains, just above Palm Springs. We stopped specifically at the top of Deep Canyon, where if one looked south, we could see a large dip slope composed of late Cretaceous mylontinized granites and tonalites.  We crawled all over the mylonites in search of two things: pseudotachylites and titanites.  Pseudotachylites are melts of the rock generated by intense frictional heating during an earthquake.  These melts were everywhere, some in foliation and many crosscutting.  The titanites, aka sphene, were large pistachio-green porphyroblasts formed during ductile deformation.   All of these deformational features are associated in intra-arc thrusting and exhumation during the late Cretaceous and early Paleogene.  Our day was soon coming to an end.  We descended into the Coachella Valley, but not before stopping at a vista point to look at the San Andreas Fault and the Salton Sea.  We ended our day in Palm Desert with a big Italian dinner!

We started Sunday morning with some unfortunate news. One of our students had his camera bag, tootbrush, and some clothes stolen out of his room, which had been inadvertently left slightly ajar in the chaos of organizing 18 students.  We spent several hours searching for the bag, looking at security videos, and calling the police, but deep down, we knew that we weren’t going to see his bag again. The good thing, if there was a good thing, was that he still had his wallet and identification.  So we moved on, but being a few hours behind, we decided to skip some of the stops.  We ended up driving down the west side of the Salton Sea, stopping briefly at North Shores to touch the sea and to talk about the opening of the Gulf of California.  The sea keeps receding each year as water supplies to agriculture have been steadily declining, so each year, we seem to have to walk further out across the barnacle beach to reach the water. 

After we got our fix of dead fish, we drove another hour south and found ourselves at the mud volcanoes.  The high water table and high heat flow here is what causes these mud volcanoes to form. Geothermal power plants have taken advantage of this combination.  The mud volcanoes gave us an analog for many of the different volcanoes and lava flows we talked about in class: spatter cones, pahoehoe, aa, etc.  It was great to see some of these mud volcano eruptions in action!  Our next stop was Obsidian Butte, a Pleistocene rhyolitic lava flowwhich generated a large obsidian dome.  We marveled at all the beautiful flow banding and we discussed why obsidian flows tend to be big blobs rather than long, thin lava flows. Viscosity!

Talking about mud volcanoes in the Salton Sea. Emily Paine, Detao He, Cin-Ty Lee, Josh Crozier.

Talking about mud volcanoes in the Salton Sea. Emily Paine, Detao He, Cin-Ty Lee, Josh Crozier.

The rest of the day was spent getting from the Salton Sea into the Mojave Desert.  We stopped briefly at Salt Creek, where we crossed over the railroad tracks to look at the San Andreas Fault up close and personal.  Unfortunately, while we were on the other side, the longest train in the world came up and decided to park itself there.  We decided it was too dangerous for us to climb through the train back to our cars as there was no telling when the train might start up again.  The only way was to go around or, in this case, we knew there was a bridge we could go under, but the bridge was quite a ways to the north. Should we wait or walk? We had no idea how long the train was going to stay, so we decided to do the long hike.  By the time we got back to our cars, delayed by an additional hour, the train still had not moved, so it was a good decision. 

Re-energizing with a good dose of fluids, we drove up out of the Salton trough, crossing the San Andreas Fault to the north and passing through Pliocene deltaic sediments, variably deformed and tilted.  We stopped here to look at a wonderful assortment of textbook sedimentary structures (sorting, cross-bedding, soles, soft-sediment deformation), and then further up the canyon, we found the contact between these sediments and the basement, only here the basement was a new rock for the trip – Pelona greenschists associated with subducted sediments or basaltic crust during the Cretaceous.  We ended our long Sunday trip in Joshua Tree National Park, with the students climbing up and down the giant quartz monzonite boulders.

On top of a boulder in Joshua Tree National Park. L to R: Detaho He, Michale Farner, Evan Neustater, Kate Nicholson, Elizabeth Finlay.

On top of a boulder in Joshua Tree National Park. L to R: Detaho He, Michale Farner, Evan Neustater, Kate Nicholson, Elizabeth Finlay.

students examining pebble lag deposits in the Mecca Hills. Yunong Xu, Beineng Zhang, Stephanie Zou, Farah Ashraf.

students examining pebble lag deposits in the Mecca Hills. Yunong Xu, Beineng Zhang, Stephanie Zou, Farah Ashraf.

Monday would be our last day out in the field.  Our first stop would be Amboy Crater in the Mojave Desert on the North American plate. This was our opportunity to discuss why basaltic lava flows can flow much further than rhyolitic flows. Close inspection of the lava flows revealed tiny euhedral crystals of olivine and lots of vesicles! Off in the distance, we could see a pristine cinder cone.  This must have been quite the sight when it was erupting.  After our Amboy Crater stop, our goals were to look for xenoliths at Dish Hill and then trilobites in the Marble Mountains, but due to all the rains and flash floods that had happened earlier in the season, the highways were all closed.  We had no choice but to change our plans on the fly.  Our professor, Cin-Ty, decided then to try a place he had never been to before.  Off in the distance, one could see limestones jutting up against some granitic basement, so we parked our cars and walked across the alluvial plain.  We had no idea what to expect, so we were told to fan out and just explore.  With 18 pairs of eyes, we were bound to see something, and soon, students were coming up with little fragments of Vesuvianite, a clear indicator mineral for skarns!  But where was the actual skarn?  So we fanned out again, falling the trail of bread crumbs and looking around for the contact.  And there it was, all the vesuvianite was forming right up against the contact!

Vesuvianite with Elizabeth Finlay and Sarah Gerenday

Vesuvianite with Elizabeth Finlay and Sarah Gerenday

With our pockets filled with new minerals, we continued north, deep into the Mojave.  We stopped briefly at the Kelso Sand Dunes and then had lunch at the Kelso train depot, a nice green spot in the middle of the desert.  We then headed to the Cima Volcanic field, where there are numerous cones, all erupted in the Late Miocene to present.  We stopped at well-known but difficult to find lava tubes, and then we drove a little further up a rough road to look for xenoliths. Normally, we don’t do this latter part because the road is so rough, but since our plans at Dish Hill were diverted, we thought it would be a nice way to end the trip.  Unfortunately, the road became far too rough to continue further, so we hiked the last stretch.  And xenoliths we did find!  Peridotites everywhere!

Hunting xenoliths in Cima. L to R: Cin-Ty Lee (hideen), Evan Neustater, Kate Nicholson, Yunong Xu, Farah Ashraf.

Hunting xenoliths in Cima. L to R: Cin-Ty Lee (hideen), Evan Neustater, Kate Nicholson, Yunong Xu, Farah Ashraf.

Our luck, however, would not hold out.  As we turned our cars around and headed back down the slope, one of our cars hit a rock hard, twisting its axle. Definitely not good because it made it hard to drive.  What to do now?  The sun had set, the students were tired and hungry, and we had early flights out the next morning, but all the way back in Ontario, a three hour drive with a good car.  We convened at the Mad Greek in Baker and it was decided that the everyone would pile into the other working cars and just go back to Ontario so they could get a good night’s sleep.  Our professor and a couple of visiting grad students would drive the disabled vehicle back, slowly.   It took the five hours and a tire blow out in the last 20 miles, but they arrived home safely.